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Abstract

Content-oriented retrieval models are based on a
document-term matrix, whereas link-oriented re-
trieval models are based on an adjacent (parent-
child) matrix. Term frequency and inverse doc-
ument frequency are key concepts in content-
oriented retrieval, whereas pagerank, authorities
and hubs are key concepts in link-oriented retrieval.
We present in this paper a general matrix frame-
work for modelling information retrieval (IR). The
framework covers both content-oriented and link-
oriented retrieval and, in addition, includes the
structure of documents, the retrieval quality and the
semantics of indexing terms. The benefit of this
framework lies in its high level of reusability and
abstraction. The framework improves information
retrieval in the sense that system construction be-
comes significantly more efficient, and thus, bet-
ter and more personalised systems can be build at
lower costs.

1 Introduction

With the web and its search engines, ranking of re-
trieved objects becomes a focus in many application
areas. More and more people face the task of build-
ing complex information systems that provide rank-
ing functionality. The matrix framework presented
in this paper contributes to the understanding of re-
trieval concepts, and it supports the construction of
search systems since the matrix operations provide
a high level of reusability and abstraction.

The matrix framework improves retrieval in the
sense that system construction becomes more effi-
cient, flexible and robust. For a search system engi-
neer, the flexibility of tools is crucial, since the flex-

ibility of retrieval and indexing functions yields the
possibility to tune the effectiveness and efficiency
of a system for the particular needs of an end user.

The literature background of this work includes
general IR literature such as [van Rijsbergen, 1979,
Grossman and Frieder, 1998,
Baeza-Yates and Ribeiro-Neto, 1999,
Belew, 2000], and more specific literature such
as [Wong et al., 1985, Wong and Yao, 1995,
Amati and van Rijsbergen, 1998, Page et al., 1998,
Kleinberg, 1999]. [Wong et al., 1985] and
[Wong and Yao, 1995] and other publications of
the authors on the generalised vector-space model
and the probabilistic framework for information
retrieval are major foundations and motivations
for the matrix framework presented in this paper.
Furthermore, [Amati and van Rijsbergen, 1998] on
the duality of document indexing and relevance
feedback, and [Amati and Rijsbergen, 2002] on
probability distributions for exploiting term fre-
quencies and capturing normalisation motivated
our work to present a general matrix framework
in which those methods can be applied to more
than “just term frequencies”. The extension of
our matrix framework towards a probabilistic
framework with probability distributions is one of
the next research goals. The results and notations
of [Page et al., 1998] and [Kleinberg, 1999] were
input regarding link-oriented retrieval. All of the
above literature addresses the formalisation of
either content or links (structure), whereas in this
paper we propose a general matrix framework
for both content and structure. In addition, we
include relevance feedback and evaluation within
our framework.

The paper is structured as follows: First, we
introduce the matrix spaces in section 2. We
consider a collection, a document and a query
space, where we associate several matrices with
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each space. The separation of these spaces al-
lows to accommodate different assumptions (such
as term independence) within the different spaces
[Bollmann and Raghavan, 1993], while also allow-
ing us to show the duality of the applied matrix
operations and the correspondence in the meaning
of their eigenvectors. After having introduced the
overall matrix framework, we describe some of the
matrices in more detail. Section 3 investigates tf-
idf based on the content matrices. Section 4 ad-
dresses the collection and the document structure.
In sections 5 and 6, we apply the matrix framework
for modelling probabilistic relevance feedback and
precision/recall based on the query result matrix.
With the general framework presented here, tf-idf
can be applied on, for example, the link matrix,
concepts such as pagerank, authorities and hubs can
be transferred to the term-term matrix of a collec-
tion. The mathematical and formal definition of the
crucial concepts of IR in our matrix framework is a
contribution towards a logical layer of IR.

2 The Matrix Spaces

Our aim is to provide a general model for IR based
on matrices, since such a general model leads to a
system implementation with high reusability, flexi-
bility and robustness.

Table 1 shows three spaces: The collection space,
the document space, and the query result space. A
space has two dimensions and contains several el-
ements. With each element of each space, we as-
sociate matrices that represent its content, structure
and semantics.

The document-term matrix DT � , associated with
each collection, is the content matrix of a collec-
tion. The location-term matrix LT � is the content
matrix of a document. The document-class matrix
DA � is the result matrix of a query (the class dimen-
sion is also referred to as assessment dimension).
For each of these three basic matrices, we can com-
pute the product of the matrix and its transposition.
The results reflect the document similarity DD � and
term similarity TT � in the collection space, the lo-
cation similarity LL � and term similarity TT � in the
document space, and the class degree DD � and pre-
cision/recall AA � in the query result space.

Tables 2 and 3 show the modelling of a link (parent-
child) structure for the dimensions of the collection
space and the document space, respectively. Here,
we find the link-structure known from web retrieval

(structure of a collection, matrix PC � � ) in the col-
lection space while the document structure is given
in the document space (matrix PC � � ). For the doc-
ument structure, we choose the terminology loca-
tion, where location shall cover concepts such as
section, paragraph, and position.

The tables introduce a carefully chosen notation.
We use a capital letter for indicating the dimensions
of each matrix, and we use a lower case letter as
subscript for indicating the space. The matrices that
present the link structure among a dimension are
named PC for parent-child. The parent-child ma-
trices carry a subscript that indicates the dimension
and the space. For the scope of this paper, we re-
strict to the links of the elements in the dimensions
of the collection space and the document space.

The introduced notation for indicating matrix di-
mensions and spaces is one of the results of this
paper. (The notation has one weakness that might
disturb the reader:

�
is used for the term dimension

and for the matrix transposition.) The notation al-
lows for a general IR model with high abstraction.
It allows us to show the duality between query term
expansion based on term co-occurrence and page-
rank, as we will show next.

Consider the matrices and the meaning of their
eigenvectors summarised in the Tables 4 and 5.

The matrix TT � is the term similarity matrix, i. e. it
reflects the co-occurrence of terms within a collec-
tion. If we multiply a query vector of terms with
the term similarity matrix, then similar terms are
considered in the modified query vector.

��
modified � TT �
	 ��

Query elements (terms) that had a value of � in
the input query might have in the modified query
a value greater than � when similar terms occur in
the query. For the eigenvectors of TT � , we obtain:

� 	 �� � TT � 	 ��

The factor
�

is a scalar that scales the vector. The
eigenvector of TT � is a query (a document, respec-
tively) that reflects the information in TT � in the
sense that if a term occurs, then its similar terms
also do occur. The eigenvector of TT � reflects term
co-occurrence.

Next, we look at an equation that models pagerank.
Let link �������� be � if document � links to docu-
ment � , and � otherwise. Let �������� be the pager-
ank of the document (page) � . (We work here with
a simplified form of the pagerank formulae where
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Collection space Document space Query result space
DT � : Documents � Terms LT � : Locations � Terms DA � : Documents � Classes

DD � � DT � 	 DT �
�

Document sim. (term degree)
LL � � LT � 	 LT �

�
Location sim. (term degree)

DD � � DA � 	 DA �
�

Class degree
TT � � DT �

� 	 DT �
Term sim. (document degree)

TT � � LT �
� 	 LT �

Term sim. (location degree)
AA � � DA �

� 	 DA �
Precision/Recall

Table 1: The matrix spaces: collection, document and query result

Links in the dimensions of the collection space
Document links (collection structure) Term links (collection semantics)
PC � � : Parents � Children PC � � : Parents � Children
PP � � � PC � � 	 PC � �

�
: Out-degree of documents PP � � � PC � � 	 PC � � � : Generality of terms

CC � � � PC � �
� 	 PC � � : In-degree of documents CC � � � PC � � � 	 PC � � : Specificity of terms

Table 2: Structure and semantics in a collection

Links in the dimensions of the document space
Location links (document structure) Term links (document semantics)
PC � � : Parents � Children PC � � : Parents � Children
PP � � � PC � � 	 PC � �

�
: Out-degree of locations PP � � � PC � � 	 PC � � � : Generality of terms

CC � � � PC � �
� 	 PC � � : In-degree of locations CC � � � PC � � � 	 PC � � : Specificity of terms

Table 3: Structure and semantics in a document

Matrix Matrix elements Eigenvector meaning
DD � Number of common terms a term that reflects document co-containment
TT � Number of common documents a document that reflects term co-occurrence
LL � Number of common terms a term that reflects location co-containment
TT � Number of common locations a location that reflects term co-occurrence
DD � Number of common classes a class that reflects document co-membership
AA � Number of common documents a document that reflects class co-containment

Table 4: Space matrices and their eigenvectors

Matrix Matrix elements Eigenvector meaning
PC � � PC � � �

� �����	�
, where document 
 links

(points) to document �
pagerank based on out-going links; hub-oriented

PC � �
�

PC � �
�

�
� �����	�

, where document 
 is
referenced by document �

pagerank based on in-coming links; authority-
oriented

PP � � Number of common child documents;
parent similarity; out-degree

a document that reflects common parents;
� 	 �� �

PC � � 	 PC � �
� 	 �� ; a hub

CC � � Number of common parent docu-
ments; child similarity; in-degree

a document that reflects common children;
� 	 �� �

PC � �
� 	 PC � � 	 �� ; an authority

Table 5: Document dimension matrices and their eigenvectors
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we assume that the pagerank values contain a nor-
malisation with respect to the outgoing links and
we omit a starting value.) We obtain the pagerank
� � ���� of a document � as follows:

��� ���� ����� link �������� 	 ��� ����

The summation can be expressed using the parent-
child matrix PC � � .

�� � PC � �
� 	 ��

The elements of PC � �
�

reflect whether docu-
ment � links to document � , and the vector

�� con-
tains the pagerank values of all documents.

d_1 d_2 d_3

Figure 1: Three linked documents

For example, for the structure in Figure 1, we ob-
tain:

PC � �
�
�

���
�

�	�
������� � � � �� � � � ���� � � �

����
�

For the eigenvector
�� of PC � �

�
, we have:

� 	 �� � PC � �
� 	 ��

The eigenvector of PC � �
�

contains the pagerank
values of each document. Here, the fix point mean-
ing of an eigenvector in system analysis becomes
evident: an eigenvector is an input vector to a sys-
tem represented by a matrix such that the system
does not change the vector.

Tables 4 and 5 show the meaning of the eigenvec-
tors of several matrices. With our matrix frame-
work, we show here the correspondence of the
eigenvector operation, and the notion of pagerank
can be transferred, for example, to the PC � � matrix
that reflects the links (the semantics) of a collection.

We take a closer look at the eigenvectors of PP � �
and CC � � . PP � � is the parent similarity (out-
degree) and corresponds in the collection space to
DD � , the document similarity. CC � � is the child
similarity (in-degree) and corresponds in the collec-
tion space to TT � , the term similarity. With this cor-
respondence, we consider containment (document

contains term) to be dual to linking (parent links to
child), and occurrence (term occurs in documents)
to be dual to referencing (child is referenced by par-
ent).

As explained above, TT � can be used for query
(document, respectively) expansion. With TT � 	 � � ,
we add terms to vector

� � that are similar to the
terms in

� � . Analogously, with CC � � 	�� � , we add
children to vector � � that are similar to the children
in � � . On the other hand, with PP � � 	�� � , we add
parents to vector � � that are similar to the parents
in � � . An eigenvector of TT � reflects the term sim-
ilarity. An eigenvector of CC � � reflects the child
similarity (in-degree, authority), and an eigenvector
of PP � � reflects the parent similarity (out-degree,
hub).

In the next sections, we present the usage of our
framework for classical retrieval parameters such as
term frequency and document frequency. We start
with the content matrices of the collection and the
document space.

3 Content

The content of the collection is represented by the
document-term matrix of the collection space and
the content of a document is represented by the
location-term matrix of the document space.

This section investigates how the inverse document
frequency of terms can be described using the col-
lection content matrix (3.1) and how the location
frequency of terms (commonly referred to as term
frequency in IR literature) can be described using
the document content matrix (3.2).

3.1 Collection space

In a collection space � , each of the two dimensions
(documents and terms) is modelled as a vector.

The vector of documents in the collection is defined
as � � �

� � � ����� �
, where

� ��� � is the document
weight. This weight can be used to define the im-
portance of a document in the collection. It can be
estimated by taking into account the source of the
document, the size of the document, the number of
incoming and outgoing links (in the case of hyper-
linked documents) or other available evidence. In
the simple case the document weight denotes just
the presence (occurrence) of the document in the
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collection: � � ��� � if
� ��� �

� if
� ���� �

The � � - norm of a document vector is defined as� � � � �	��
 ��� ��� � � � . Based on the above defini-
tion of the document vector, the � � - norm repre-
sents the number of documents in the collection:� ��� � � � � � �
Similarly the vector of terms in the collection is de-
fined as:

� � �
� � � ��� � �

,
� � � � and the � � - norm of

the term vector is defined as
� � � � ��� 
 ��� ��� � � � . In

the simple case where� �
��� � if

� � � �
� if

� � �� �
the � � - norm represents the number of terms in the
collection:

� � � � � � � � � .
Let � � � �

� � � ��� � � � �
, be the matrix of document-

term information in the collection, where the rows
correspond to documents and columns to terms. We
define each matrix element:� � ��� � � � if

� ��� � �
� if

� ���� � �
For example, let us consider the collection contain-
ing documents

� �
,
���

and
���

and terms
� �

,
� �

,
� �

and
���

. The document and term vectors are:

� � �

���
�

�� � �� � �� � �

� ��
�

� � �

�����
�

�� � �� � �� � �� � �

� ����
�

and the number of documents and terms in the col-
lection are

� ��� ��� and
� � � ��� respectively.

Let the document-term matrix of our collection be:

� � � �

���
�

� � � � � � ���� � � � � �� � � � � �� � � � � �

� ��
�

Our aim is to define the inverse document frequency
of a term in a collection based on the content matrix
of the collection.

The common definition of the inverse document
frequency idf  � � c � based on the document fre-

quency df  � � c � of a term in a collection is:

df  � � c ��� �! �  � � c �� �  c � (1)

idf  � � c ��� �#"%$'&)( df  � � c � (2)

where
� �  c � is the number of documents in the col-

lection and  �  � � c � is the number of documents in
which term

�
occurs

Following these definitions, we describe 
 ��* in our
matrix framework, by defining a vector of the terms
in the collection where each element is the number
of documents containing the term:

 � - � � � � �� 	 � � � �
�  �,+�- � � � �

For our example, we obtain

 � - � � �/. � � � � � � � �
 � 0 � 0 �21

By normalising each element of  � -
� � with the

number of documents in the collection, we obtain
a vector of the terms in the collection where each
element is the document frequency (

��*
) of the term:��*

-
� � �! � - � �� ���

For our example, this yields:

��*
-
� � � . � � � � � � � ���* �� �� �� �� 1

Next, we apply the negative logarithm on each ma-
trix element of

��*
-
� � to obtain the inverse doc-

ument frequencies. Let apply(f,M) be a function
which applies the function f to each matrix element.
We obtain the 
 �3* -

� � vector which is the vector of
the terms in the collection where each element is
the inverse document frequency of the term:


 ��* -
� � �

� � �54��  "%$'&)( � ��* -
� � �

For our example, we obtain:


 ��* -
� � � . � � � � 6'66


 �3* "�$&,( � � "�$&,( �� 6'66 1
Next, we investigate — analog to the document fre-
quency of a term — the term frequency of a docu-
ment. (Note that we investigate the term frequency
of a document, not the term frequency of a term.
The latter one is dealt with in section 3.2.)
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The definition of the inverse term frequency itf  � � c �
of a document is based on the term frequency
tf  � � c � of a document in a collection.

tf  � � c ��� �! +  � � c �� +  c � (3)

itf  � � c ��� �2" $&,( tf  � � c � (4)

Note the correspondence between definition 1 (doc-
ument frequency value) and definition 3 (term fre-
quency value), definition 2 (inverse document fre-
quency value) and definition 4 (inverse term fre-
quency value).

Therefore, we can analogously define a vector of
the documents in the collection where each element
is the number of terms occurring in the document:

 � - � � � � � �
	 � � �
�  � � - � � � �

a vector of the documents in the collection where
each element is the term frequency of the docu-
ment: � *

- � � �! � - � �� � �
and a vector of the documents in the collection
where each element is the inverse term frequency
of the document:


 � * - � � �
� � �54��  " $&,( � � * - � � �

For our example, we obtain:


 � * -
� � � . � � ��� ���


 � * "�$&,( �� "�$'&)( �� "�$&,( �� 1
The inverse document frequency reflects the so-
called discriminative power (occurrence) of a term,
the inverse term frequency reflects the specific
power (length) of a document.

Note the perfect mathematical analogy between
document and term frequency. However, there is
a terminological misfit with the common term fre-
quency definition (common is the usage of term
frequency for a term in a document) and the term
frequency of a document. The term frequency de-
fined in this section is the term frequency of a doc-
ument in a collection, whereas the classical term
frequency corresponds to the location frequency of
a term in a document, as we point out in section 3.2.

3.2 Document space

Similarly to the description of the collection space,
each of the two dimensions (location-term) of the
document space

�
is modelled as a vector.

The vector of locations in the document is defined
as � � �

� 4 � � � � � , 4 � � � and the vector of terms in
the document as

� � �
� � � ��� � �

,
� � � �

Let � � � �
� 4 � ��� � � ��� be the matrix of location-

term information in the document, where rows cor-
respond to locations and columns to terms. Each
matrix element is defined as:4 � ��� � � � if

� � � 4 �
� if

� � �� 4 �
Let a document with content such as ”sailing boats
greece sailing” be given. The location and term
vectors of this document are then defined as fol-
lows:

� � �
�����
�

�4 � �4 � �4 � �4 � �

� ����
�

� � �

���
�

�� � �� � �� � �

����
�

where location corresponds to term positions in the
document. The location-term matrix representing
the document content is given as:

� � � �
�����
�

� � � � � �4 � � � �4 � � � �4 � � � �4 � � � �

� ����
�

Our aim is to define the location frequency of a term
in a document using the matrices of the document
space. Note that this corresponds to the classical IR
notion of term frequency and this becomes clear as
we first present the classical term frequency defini-
tion and then introduce the location frequency defi-
nition.

The term frequency of a term in a document is com-
monly defined as:

tf  � � � ��� � occ  � � � �
occ  � max � � � (5)

� �
tf  � � � � � � � occ  � � � � � ���

� � � occ  � � � � �
occ  � max � � �

The tf -value is sometimes lifted to the interval
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� 6�� �
tf  � � � � � � with

tf  � � � ��� � �0 	 . ��� occ  � � � �
occ  � max � � � 1

In general, the lifting to the interval
� �

tf  � � � � �

� 6 � can be described with

tf  � � � ��� � � �  � " � � 	 occ  � � � �
occ  � max � � �

We mention the lifting here to be comprehensive,
however, for the matrix-based definition we do not
consider it further, since the lifting factor is heuris-
tic and depends on the actual collection and re-
trieval function. See [Salton and Buckley, 1988]
and related publications for the usage of term fre-
quencies.

Following these definitions, we introduce the
matrix-based definition of the location frequency of
a term in a document. Firstly, we define a vector of
the terms in the document where each element is
the number of locations (  4 ) containing the term:

 4 - � � � � �
� 	 � � � � �  4 +�- � � � �

For our example, we obtain:

 4 - � � � . � � � � � �
 4 0 � �21

The next step is to define a vector of the terms in
the document where each element is the location
frequency ( 4 * ) of the term:4 * -

� � �  4 - � ��  4 - � � ���
(
� 6 ���

: � ���
	����� � �� ��� ������� � � � � � )
Whereas the document frequency of a term was de-
fined by normalising with the number of documents
in the collection, the location frequency of a term is
defined by normalising with the maximal location
frequency in the document.

For our example, we obtain:4 * -
� � � . � � � � � �4 * �� �� �� 1

Also, as previously done in the collection space,
where we defined the term frequency of a docu-
ment, we can define in the document space the term
frequency of a location.

This can be achieved by defining the vector of the
locations in the document where each element is the
number of terms occurring in the location:

 � - � � � � � � 	 � � � �  ��� - � � � �

and the vector of the locations in the document
where each element is the term frequency of the lo-
cation: � *

- � � �  � - � ��  � ��� ���
Next, we describe the matrices related to structure.

4 Structure and Semantics

In the collection space and in the document space,
the links among the dimensions constitute the struc-
ture and the semantics in a collection and a docu-
ment, respectively.

PC � � is the matrix that reflects the collection struc-
ture (links among documents), and PC � � is the
matrix that reflects the document structure (links
among document parts). The matrices PP � � �
PC � � 	 PC � �

�
and CC � � � PC � �

� 	 PC � � reflect
the document parent and child similarity, as pointed
out in section 2. Thereby, PP � � is also referred to
as co-citation degree, i. e. the degree to which two
documents cite the same children. CC � � is referred
to as bibliographic coupling degree, i. e. the degree
to which two documents are cited by the same par-
ents.

In a dual way, we can consider PP � � and CC � � in a
document. These parameters are potentially useful
in structured document retrieval where we face the
task of estimating probabilities for document parts.
The probability estimation could take the “hub” and
“authority” feature of document parts into account.

The semantics in the collection space is reflected
in PC � � , from which we derive PP � � � PC � � 	
PC � � � and CC � � � PC � � � 	 PC � � , which re-
flect the term parent and term child similarities.
The eigenvector meanings given in Table 5 apply
in a dual way to PP � � and CC � � . An “author-
ity” term is a term with a high number of incoming
links, i. e. it is a specialisation of several general
terms. For example, “business technology transfer
manager” is an authority, since this compound is
a specialisation of several general terms. A “hub”
term is a term with many outgoing links (many spe-
cialisation). For example, a name such as “Smith”
could be a hub term, since it expands to many com-
pounds that are distinctive in the first name. With
this “hub” view on terms, terms with several mean-
ings (homonymy) and smallest parts of a word with
a meaning (morphemes) are hub candidates. Hub
terms tend to be general (broad) terms whereas au-
thority terms tend to be specific (narrow) terms.
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The combination of this hub and authority view on
terms with the term similarity matrix TT � is an in-
teresting challenge since it adds a term characteris-
tics to the otherwise purely occurrence-based simi-
larity measure.

Next, we consider the modelling of precision and
recall in our matrix framework.

5 Precision and Recall

Precision and recall are defined as follows:

precision � � retrieved � relevant
retrieved

recall � � retrieved � relevant
relevant

The description of precision/recall in our matrix
framework is based on the document assessment
matrix of a query result. Let ret stand for retrieved
and let rel stand for relevant. Let

� �
,
���

, and
� �

be
retrieved documents, and let

� �
and

���
be relevant

documents. This is represented in matrix DA � as
follows:

DA � �

�����
�

ret rel�	� � ���� � ���� � �� � � �

������
�

Analog to the operation for obtaining a term-term
matrix from the document-term matrix, we per-
form the operation for obtaining an assessment-
assessment matrix from the document-assessment
matrix.

AA � � DA �
� 	 DA � �

�� ret rel
ret � �
rel � 0

��
The precision/recall values can be derived directly
from the matrix elements.

precision � AA �  ret � rel �
AA �  ret � ret �

recall � AA �  ret � rel �
AA �  rel � rel �

The above definition captures the set view on re-
trieval results. However, a retrieval system returns

a ranked list of documents rather than a set of docu-
ments, and we require to capture the ranking infor-
mation within the evaluation.

Let

DA � � �
�����
�

ret rel� � � 6�� �� � � 6�� �� � � 6 � �� � � 6�� �

� ����
�

and

DA � � �
�����
�

ret rel� � � 6�� �� � � 6�� �� � � 6 � �� � � 6�� �

� ����
�

be the retrieval results of two systems, where the
ranks and RSV’s of

� �
and

���
are swapped. We

obtain the assessment-assessment matrices

AA � � �
�� ret rel

ret � 6 ��� � 6��
rel � 6�� 0 ��

and

AA � � �
�� ret rel

ret � 6 ��� � 6��
rel � 6�� 0

��
The precision and recall value derived from AA � �
are higher than the values derived from of AA � � .
That meets our expectation since system � re-
trieves

� �
, a relevant document, with a higher value

(namely, RSV  � � � � � � AA � �  � � � ret � � � 6�� ) than
system

0
does (here, RSV  � � � � � � AA � �  � � � ret � �

� 6 � ).

We have sketched in this section the usage of our
matrix framework for a retrieval quality measure.
The potential of the matrix framework lies in the
definition and management of more complex mea-
sures. For example, we want to consider the effi-
ciency of query processing and the structure of doc-
uments in system evaluation. For efficiency, we can
introduce an additional assessment column in DA �
where the column reflects the time at which a doc-
ument is delivered by a system. For structure, we
can exploit the links of the location dimension of a
document (matrix PC � � ). The definition of those
new evaluation measures and the extension of DA �
is important for structured document retrieval and
the matrix framework is a formalism in which those
new evaluation measures can be established.

As a last application of our matrix framework, we
investigate the modelling of the probabilistic re-
trieval model based on relevance feedback.
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6 Relevance Feedback

There are two widely known relevance feedback
models: the probabilistic model and the vector-
based model. We concentrate here on the proba-
bilistic model, since the modelling of the vector-
based model follows directly from the vector repre-
sentation of documents.

The common notation for the probabilistic model
is:

�  � � � � probability that term
�

occurs in a rel-
evant document�  � � ��� � probability that term

�
occurs in a

non-relevant document�  � � � � � probability that term
�

does not occur
in a relevant document�  � � � ��� � probability that term

�
does not occur

in a non-relevant document
RSV  � � � � retrieval status value for the

document-query pair  � � � �
� + � � $&,( �  � � � � 	��  � � � ��� ��  � � ��� � 	 �  � � � � �

RSV  � � � � � � �+�� ��� � � +

For literature on the probabilistic model see,
for example, [Robertson and Sparck Jones, 1976],
[Fuhr and Buckley, 1991], or [Ruthven, 2001].

Now, we use our matrix framework for describing
the probabilistic retrieval model. Consider the fol-
lowing document-term matrix:

DT � �

���������
�

� � � �� � � ���� � ���� � �� � � ���� � ���	 � �

����������
�

For the document-assessment matrix, let
� �

and
��	

be retrieved and relevant documents, whereas
� �

,���
, and

���
are retrieved but not relevant.

� �
is

not retrieved. We store this information in an as-
sessment matrix where the matrix elements are nor-

malised such that each column sum is equal to one.

DA � �

���������
�

ret 
 rel ret 
 � rel� � ��� 0 ���� � �� ���� � �� �� � � �� � � �� �� 	 ��� 0 �

� ��������
�

The equation

TA � � DT �
� 	 DA �

yields the following term-assessment matrix:

TA � �

�� ret 
 rel ret 
 � rel� � �� 0 0 � �� � 0 � 0 �� �
��

Here, term
� �

occurs in one of the two retrieved
and relevant documents, and in two of the three re-
trieved but not relevant documents. Term

� �
oc-

curs in all retrieved and relevant documents, and
in one of the retrieved but not relevant documents.
The term-assessment matrix TA � has the following
probabilistic semantics:

TA � �

�� ret 
 rel � � ret 
 � rel � ���� � �  � � � � � � � �  � � � � � ��� �� � �  � � � � � � � �  � � � � � ��� �

��
The equation

NTA � � � " TA �

yields the probabilities �  � � � � � and �  � � � ��� � .
By rewriting � + as follows

� + � $'&)( �  � � � � �  � � � ��� ��  � � ��� � �  � � � � �
� $'&)( �  � � � � � $&,( �  � � � ��� � "$'&)( �  � � ��� � " $&,( �  � � � � �

we can now use the TA � and NTA � matrices for
computing � + . Let $&,(�� � � �  TA � � apply the loga-
rithm to each element of the first column of TA � ,
i. e. � projects on the first column of TA � . We ob-
tain: � �

� � + � � $'&)(  � � � �  TA � ��� �$'&)(  � � 0 �  NTA � � "$'&)(  � � 0 �  TA � ��� "$'&)(  � � � �  NTA � ���
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With
�� � being a vector of document-query terms

(i. e.
��� �

� � ), we obtain the retrieval status val-
ues according to the probabilistic relevance feed-
back model.

RSV  � � � � � � � 	 �� �
We have shown the description of the probabilis-
tic relevance feedback model based on our matrix
framework. The next research challenge is to in-
vestigate the duality of the probabilistic relevance
feedback model, in which the logarithm on a prob-
ability is applied and the relationship of disjoint
matrix columns is exploited (retrieved 
 relevant
and retrieved 
 � relevant are disjoint), to the other
spaces and matrices introduced in this paper.

7 Summary

We have defined a general matrix framework for de-
scribing key concepts of information retrieval. We
considered three spaces: a collection space, a doc-
ument space, and a query result space. Each space
is associated with two dimensions, for each dimen-
sion we consider an adjacent (parent-child) matrix.

The benefit of our approach is that we achieve a
high level of reusability and abstraction in mod-
elling information retrieval and building retrieval
systems. The dualities we presented include that
the similarity measures as known for the document-
term matrix of a collection correspond to precision-
recall measures in the query result space, and that
the link-based retrieval techniques correspond to
Eigenvectors on the matrices of the document di-
mension in the collection space.

Matrix operations have a close link to relational
algebra. The framework presented here paves the
way for modelling IR on the layer of relational al-
gebra, and thus we achieve a strong integration be-
tween retrieval and database technology. With this
framework, we make the construction of IR systems
more efficient, and in the end we can build more
effective and personalised retrieval systems since
the costs for building IR systems are reduced when
built upon a logical model such as this general ma-
trix framework.
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