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Abstract. This paper presents a novel probabilistic information retrieval framework in which the retrieval problem is formally

treated as a statistical decision problem. In this framework, queries and documents are modeled using statistical language models (i.e.,

probabilistic models of text), user preferences are modeled through loss functions, and retrieval is cast as a risk minimization problem.

We discuss how this framework can unify existing retrieval models and accommodate the systematic development of new retrieval

models. As an example of using the framework to model non-traditional retrieval problems, we derive new retrieval models for subtopic

retrieval, which is concerned with retrieving documents to cover many different subtopics of a general query topic. These new models

differ from traditional retrieval models in that they go beyond independent topical relevance.

1 Introduction

A large number of different information retrieval models have been proposed and studied over the past
decades. However, despite all the progress, no single unified retrieval model has proven to be most effective,
and there are still several major challenges. First, theoretical guidance and formal principles have perhaps
rarely led directly to good performance; instead, a theoretically well defined formula often needs to be heuris-
tically modified in order to perform well empirically. It is thus a significant scientific challenge to develop
principled retrieval approaches that also perform well empirically. Second, most existing retrieval models are
developed based on the assumption of independent topical relevance, which rarely holds in real applications.
It is unclear how we may develop models that can relax such an assumption.

In this paper we present a novel probabilistic information retrieval framework that addresses these chal-
lenges. The basic idea of the new framework is to formally treat the task of information retrieval as a statistical
decision problem. Specifically, given a collection of documents, a query, and any other information that we
know about the user, a retrieval system needs to choose a subset of documents and present them in an ap-
propriate way. For example the standard retrieval problem can be regarded as a decision problem where the
decision involves choosing the best ranking. We formalize this decision-theoretic view of retrieval within the
framework of Bayesian decision theory. In particular, we treat both a query and a document as observations
from a probabilistic model (called a statistical language model), and encode retrieval preferences with a loss
function, defined with respect to the language models and a retrieval action. According to Bayesian decision
theory, the optimal retrieval action (e.g., the optimal ranking in the case when the decision involves choosing
a ranking) is the one that minimizes the Bayes risk, or the expected loss associated with the chosen action
conditioned on the observed query and documents.

This new framework unifies several existing retrieval models, including the recently proposed language
modeling approach, within one general probabilistic framework, and provides guidance on how we may
further improve a retrieval model and systematically explore new approaches to information retrieval. Several
new retrieval models derived using the risk minimization framework have been shown to be quite effective
empirically.
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In addition to its generality, this risk minimization framework has several important advantages over tradi-
tional retrieval frameworks. First, it systematically incorporates statistical language models as components.
Statistical language models provide a principled way to model text documents and queries, making it possible
to set retrieval parameters through statistical estimation methods. Second, the risk minimization framework
makes it possible to systematically and formally study general optimal retrieval strategies. For example,
through making different assumptions about the loss function for ranking we can derive an optimal ranking
principle, which is similar to the probability ranking principle, but addresses several limitations of it. Finally,
the risk minimization framework goes beyond the traditional notion of independent, topical relevance. As we
will show later, it is possible to derive retrieval models for a non-traditional retrieval task where the goal is to
retrieval as many different subtopics of a general topic as possible.

The rest of the paper is organized as follows. In Section 2, we briefly review existing retrieval models and
point out how the risk minimization is related to them. In Section 3, we present the basic idea and setup of
the risk minimization framework. In Section 3.2.1 and Section 3.2.2, we derive several special cases of the
framework, and demonstrate how it can cover existing retrieval models and how it can facilitate development
of new retrieval models, including those appropriate for the non-traditional subtopic retrieval task. Finally,
we summarize the framework in Section 5 and Section 6.

2 Existing Retrieval Models

Over the decades, many different retrieval models have been proposed, studied, and tested. Their math-
ematical basis spans a large spectrum, including algebra, logic, probability and statistics. It is impractical
to provide a complete survey of all the existing retrieval models in this paper, but we can roughly classify
the existing models into three major categories, depending on how they define/measure relevance (Dominich,
2001). In the first category, relevance is assumed to be correlated with the similarity between a query and
a document. In the second category, a binary random variable is used to model relevance and probabilistic
models are used to estimate the value of this relevance variable. In the third category, the uncertainty of
relevance is modeled by the uncertainty in inferring queries from documents or vice versa. We now discuss
the three categories in details.

2.1 Similarity-based Models

In a similarity-based retrieval model, it is assumed that the relevance status of a document with respect to
a query is correlated with the similarity between the query and the document at some level of representation;
the more similar to a query a document is, the more relevant the document is assumed to be. In practice, we
can use any similarity measure that preserves such correlation to generate a relevance status value (RSV) for
each document and rank documents accordingly.

The vector space model is the most well-known model of this type (Salton et al., 1975a; Salton and
McGill, 1983; Salton, 1989), in which a document and a query are represented as two term vectors in a high-
dimensional term space and each term is assigned a weight that reflects its “importance” to the document or
the query. Given a query, the relevance status value of a document is given by the similarity between the
query vector and document vector as measured by some vector similarity measure, such as the cosine of the
angle formed by the two vectors.

The vector space model naturally decomposes a retrieval model into three components: (1) a term vector
representation of query; (2) a term vector representation of document; (3) a similarity/distance measure of
the document vector and the query vector. However, the “synchronization” among the three components is
generally unspecified; in particular, the similarity measure does not dictate the representation of a document
or query. Thus, the vector space model is actually a general retrieval framework, in which the representation
of query and documents as well as the similarity measure can all be arbitrary in principle (Dominich, 2002).

The flexibility of vector space model makes it easy to incorporate different indexing models. For example,
the 2-Poisson probabilistic indexing model can be used to select indexing terms and/or assign term weights
(Harter, 1975; Bookstein and Swanson, 1975). Latent semantic indexing can be applied to reduce the di-
mension of the term space and to capture the semantic “closeness” among terms, and thus to improve the
representation of the documents and query (Deerwester et al., 1990). A document can also be represented
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by a multinomial distribution over the terms, as in the distribution model of indexing proposed in (Wong and
Yao, 1989).

The main criticism for the vector space model is that it provides no formal framework for the representa-
tion, making the study of representation inherently separated from the relevance estimation. The separation
of the relevance function from the weighting of terms has the advantage of being flexible, but makes it very
difficult to study the interaction of representation and relevance measurement. The optimality of a similar-
ity/relevance function is highly dependent on the actual representation (i.e., term weights) of the query and the
document. As a result, the study of representation in the vector space model has been so far largely heuristic.
The two central problems in document and query representation are the extraction of indexing terms/units and
the weighting of the indexing terms. The choice of different indexing units has been extensively studied, but
no significant improvement has been achieved over the simplest word-based indexing (Lewis, 1992), though
some more recent evaluation has shown more promising improvement on average through using linguistic
phrases (Evans and Zhai, 1996; Strzalkowski, 1997; Zhai, 1997). Many heuristics have also been proposed to
improve term weighting, but again, no weighting method was found to be significantly better than the heuris-
tic TF-IDF term weighting (Salton and Buckley, 1988). To address the variance in the length of documents,
an effective weighting formula also needs to incorporate document length heuristically (Singhal et al., 1996).
Salton et al. introduced the idea of the discrimination value of an indexing term (Salton et al., 1975b). The
discrimination value of an indexing term is the increase or the decrease in the mean inter-document distance
caused by adding the indexing term to the term space for text representation. They found that the middle
frequency terms have higher discrimination value. Given a similarity measure, the discrimination value pro-
vides a principled way of selecting terms for indexing. However, there are still two deficiencies. First, it is not
modeling relevance, but rather, replies on a given similarity measure. Second, it is only helpful for selecting
indexing terms, but not very much for the weighting of terms.

The risk minimization framework would suggest a new formal similarity-based retrieval model in which
the representation of query and documents is associated with statistical language models. The use of statistical
language models makes it possible to replace the traditional ad hoc tuning of parameters with the more
principled estimation of parameters. The traditional vector space models can be regarded as special cases of
this more general similarity model when the parameters are set heuristically.

2.2 Probabilistic Relevance Models

In a probabilistic relevance model, we are interested in the question “What is the probability that this
document is relevant to this query?” (Sparck Jones et al., 2000). Given a query, a document is assumed to be
either relevant or non-relevant, but a system can never be sure about the true relevance status of a document,
so it has to rely on a probabilistic relevance model to estimate it.

Formally, let random variables D and Q denote a document and query, respectively. Let R be a binary
random variable that indicates whether D is relevant to Q or not. It takes two values which we denote as r

(“relevant”) and r (“not relevant”). The task is to estimate the probability of relevance, i.e., p (R = r |D, Q).
Depending on how this probability is estimated, there are several special cases of this general probabilistic
relevance model.

First, p(R = r |D, Q) can be estimated directly using a discriminative (regression) model. Essentially, the
relevance variable R is assumed to be dependent on “features” that characterize how well D matches Q. Such
a regression model was first introduced, with some success by Fox (Fox, 1983), where features such as term
frequency, authorship, and co-citation were combined using linear regression. Fuhr and Buckley (Fuhr and
Buckley, 1991) used polynomial regression to approximate relevance. Gey used logistic regression involving
information such as query term frequency, document term frequency, IDF, and relative term frequency in
the whole collection, and this model shows promising performance in three small testing collections (Gey,
1994). Regression models provide a principled way of exploring heuristic features and ideas. One important
advantage of regression models is their ability to learn from all the past relevance judgments, in the sense that
the parameters of a model can be estimated based on all the relevance judgments, including the judgments
for different queries or documents. However, because regression models are based on heuristic features in
the first place, much empirical experimentation would be needed in order to find a set of good features. A
regression model thus provides only limited guidance for extending a retrieval model.
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Alternatively, p(R = r |D, Q) can be estimated indirectly using a generative model, and documents can
be ranked according to the following log-odds ratio (Lafferty and Zhai, 2003):

log
p(r |D, Q)

p(r |D, Q)
= log

p(D, Q | r) p(r)

p(D, Q | r) p(r)
. (1)

There are two different ways to factor the conditional probability p(D, Q |R) corresponding to “document-
generation” and “query-generation,” which, as discussed in (Lafferty and Zhai, 2003), would lead to models
that have important differences from an estimation perspective, as they involve different parameters for esti-
mation.

Most classic probabilistic retrieval models (Robertson and Sparck Jones, 1976; van Rijsbergen, 1979;
Robertson et al., 1981; Fuhr, 1992) are based on document generation (i.e., p(D, Q |R) = p(D |Q, R)p(Q |R)).
The Binary Independence Retrieval (BIR) model (Robertson and Sparck Jones, 1976; Fuhr, 1992) is perhaps
the most well known classical probabilistic model. It assumes that terms are independently distributed in each
of the two relevance models, so is essentially a use of Naı̈ve Bayes classifier for document ranking (Lewis,
1998). 1

There have been several efforts to improve the binary representation. van Rijsbergen extended the binary
independence model by capturing some term dependency as defined by a minimum-spanning tree weighted
by average mutual information (van Rijbergen, 1977). Croft (Croft, 1981) investigated how the heuristic
term significance weight can be incorporated into probabilistic models in a principled way. Another effort
on improving document representation is to introduce the term frequency directly into the model by using a
multiple 2-Poisson mixture representation of documents (Robertson et al., 1981). While this model has not
shown superior empirical performance itself, an approximation of the model based on a simple TF formula
turns out to be quite effective (Robertson and Walker, 1994). A different way of introducing the term fre-
quency into the model, though not directly proposed, but implied by much work in text categorization, is
by regarding a document as being generated from a unigram language model (Kalt, 1996; McCallum and
Nigam, 1998).

Models based on query generation (p(D, Q |R) = p(Q |D, R)p(D |R)) have been explored in (Maron
and Kuhns, 1960), (Robertson et al., 1982), (Fuhr, 1992) and (Lafferty and Zhai, 2003). Indeed, the Proba-
bilistic Indexing model proposed in (Maron and Kuhns, 1960) is the very first probabilistic retrieval model,
in which the indexing terms assigned to a document are weighted by the probability that a user who likes
the document would use the term in the query. That is, the weight of term t for document D is p(t |D, r).
However, the estimation of the model is based on user’s feedback, not the content of D. The Binary Indepen-
dence Indexing (BII) model proposed in (Fuhr, 1992) is another special case of the query-generation model.
It allows the description of a document (with weighted terms) to be estimated based on arbitrary queries,
but the specific parameterization makes it hard to estimate all the parameters in practice. In (Lafferty and
Zhai, 2003) it is argued that the recently proposed language modeling approach to retrieval is also a spe-
cial probabilistic relevance model when query-generation is used to decompose the generative model. This
work provides a relevance-based justification for this new family of probabilistic models based on statistical
language modeling.

The language modeling approach was first introduced by Ponte and Croft in (Ponte and Croft, 1998)
and independently explored or later explored in (Hiemstra and Kraaij, 1998; Miller et al., 1999; Berger
and Lafferty, 1999; Song and Croft, 1999), among others. The estimation of a language model based on
a document (i.e., the estimation of p(. |D, r)) is the key component in the language modeling approach.
Indeed, most work in this direction differs mainly in the language model used and the way of language model
estimation. Smoothing of a document language model with some kind of collection language model has been
very popular in the existing work. For example, geometric smoothing was used in (Ponte and Croft, 1998);
linear interpolation smoothing was used in (Hiemstra and Kraaij, 1998; Berger and Lafferty, 1999), and was
viewed as a 2-state hidden Markov model in (Miller et al., 1999). Berger and Lafferty explored “semantic
smoothing” by estimating a “translation model” for mapping a document term to a query term, and reported
significant improvements over the baseline language modeling approach through the use of translation models
(Berger and Lafferty, 1999).

1The required underlying independence assumption for the final retrieval formula is actually weaker (Cooper, 1991).

4



The language modeling approach has two important contributions. First, it introduces a new effective
probabilistic ranking function based on the query-generation. While the earlier query-generation models
have all encountered difficulty in estimating the parameters, the model proposed in (Ponte and Croft, 1998)
explicitly addresses the estimation problem through the use of statistical language models. Second, it re-
veals the connection between the difficult problem of text representation in IR and the language modeling
techniques that have been well-studied in other application areas such as statistical machine translation and
speech recognition, making it possible to exploit various kinds of language modeling techniques to address
the representation problem2.

Instead of imposing a strict document-generation or query-generation decomposition of p(D, Q |R), one
can also “generate” a document-query pair simultaneously. Mittendorf & Schauble (Mittendorf and Schauble,
1994) explored a passage-based generative model using Hidden Markov Model (HMM), which can be re-
garded as such a case. In this work, a document query pair is represented as a sequence of symbols, each
corresponding to a term at a particular position of the document. All term tokens are clustered in terms of the
similarity between the token and the query. In this way, a term token at a particular position of a document
can be mapped to a symbol that represents the cluster the token belongs to. Such symbol sequences are mod-
eled as the output from an HMM with two states, one corresponding to relevant passage and the other the
background noise. The relevance value is then computed based on the likelihood ratio of the sequence given
the passage HMM model and the background model.

Probabilistic relevance models can be shown to be a special case of the risk minimization framework when
a “constant-cost” relevance-based loss function is used. In the risk minimization framework, we also maintain
a separate generative model for queries and documents respectively, thus support both document generation
and query generation in some sense.

2.3 Probabilistic Inference Models

In a probabilistic inference model, the uncertainty of relevance of a document, with respect to a query,
is modeled by the uncertainty associated with inferring/proving the query from the document. Depending
on how one defines what it means by “proving a query from a document,” different inference models are
possible.

van Rijsbergen introduced a logic-based probabilistic inference model for text retrieval (van Rijsbergen,
1986). In this model, a document is relevant to a query if and only if the query can be proved from the
document. Boolean retrieval model can be regarded as a simple case of this model. To cope with the inherent
uncertainty in relevance, van Rijsbergen introduced a logic for probabilistic inference, in which the proba-
bility of a conditional, such as p → q, can be estimated based on the notion of possible worlds. In (Wong
and Yao, 1995), Wong and Yao extended the probabilistic inference model and showed that the general prob-
abilistic inference model actually subsumes several other TR models such as Boolean, vector space, and the
classic probabilistic models. Fuhr shows that some particular form of the language modeling approach can
also be derived as a special case of the general probabilistic inference model (Fuhr, 2001). Nie recently shows
that query translation in cross-language information retrieval is a special case of query expansion which can
be formulated using logical inference (Nie, 2003).

While theoretically interesting, the probabilistic inference models all must rely on further assumptions
about the representation of documents and queries in order to obtain an operational retrieval formula. The
choice of such representations is in a way outside the model, so there is little guidance on how to choose or
how to improve a representation.

The inference network model is also based on probabilistic inference (Turtle and Croft, 1991). It is es-
sentially a Bayesian belief network that models the dependency between the satisfaction of a query and the
observation of documents. The estimation of relevance is based on the computation of the conditional prob-
ability that the query is satisfied given that the document is observed. Other similar uses of Bayesian belief
network in retrieval have been presented in (Fung and Favero, 1995; Ribeiro and Muntz, 1996; Ribeiro-Neto
et al., 2000). The inference network model is a very general formalism; with different ways to realize the
probabilistic relationship between the evidence of observing documents and the satisfaction of user’s infor-

2The use of a multinomial model for documents was actually first introduced in (Wong and Yao, 1989), but was not exploited as a
language model.

5



mation need, one can obtain many different existing specific TR models, such as Boolean, extended Boolean,
vector space, and conventional probabilistic models. More importantly, it can potentially go beyond the
traditional notion of topical relevance. The generality makes it possible to combine multiple evidence, in-
cluding different formulations of the same query. The query language based directly on the model has been
an important and practical contribution to IR technology.

However, despite its generality, the inference network framework says little about how one can further
decompose the general probabilistic model. As a result, operationally, one usually has to set probabilities
based on heuristics, as done in the Inquery system (Callan et al., 1992).

Kwok’s network model may also be considered as performing a probabilistic inference (Kwok, 1995),
though it is based on spread activation.

In general, the probabilistic inference models address the issue of relevance in a very general way. In some
sense, the lack of a commitment to specific assumptions in these general models has helped to maintain their
generality as a retrieval model. But this also deprives them of the “predictive power” as a theory. As a result,
they generally provide little guidance on how to refine the general notion of relevance.

The risk minimization framework is also quite general. Indeed, we will be able to show that many existing
models are special cases of risk minimization. Furthermore, the framework goes beyond the traditional no-
tion of topical relevance, just like the inference network framework, and it allows for incorporating multiple
user factors as retrieval criteria. However, the risk minimization framework is different from the probabilistic
inference models and other Bayesian belief network models in that it provides an explicit and direct connec-
tion to (query and document) language models. Techniques of language modeling can thus be brought into
an operational retrieval model easily. In this sense, it is a much more refined and operational framework than
probabilistic inference models.

3 The Risk Minimization Framework

The risk minimization framework was first presented in (Lafferty and Zhai, 2001). Its basic idea is to
formally treat information retrieval as a statistical decision problem, so let us first discuss informally how one
may view retrieval as a decision problem.

A retrieval system can be regarded as an interactive information service system that answers a user’s query
by presenting a list of documents. Usually the user would examine the presented documents and reformulate
a query if necessary; the new query is then executed by the system to produce another new list of documents
to present. The cycle continues like this. At each cycle, the retrieval system faces a decision-making problem
– it needs to choose a subset of documents and present them to the user in some way, based on the information
available to the system, which includes the current user, the user’s query, the sources of documents, and a
specific document collection. For example, the system may decide to select a subset of documents and present
them without any order (like in Boolean retrieval); alternatively, it may decide to select all the documents and
present them as a ranked list (like in the vector space model). In general, there could be many choices for the
decision space, and we can regard the whole process of information retrieval as consisting of a series of such
decision making tasks for the system.

We now formally define this decision problem. First, we formally define what a query is and what a
document is. We view a query as being the output of some probabilistic process associated with the user U ,
and similarly, we view a document as being the output of some probabilistic process associated with an author
or document source Si. A query (document) is the result of choosing a model, and then generating the query
(document) using that model. A set of documents is the result of generating each document independently,
possibly from a different model. (The independence assumption is not essential, and is made here only to
simplify the presentation.) The query model could, in principle, encode detailed knowledge about a user’s
information need and the context in which they make their query. Similarly, the document model could
encode complex information about a document and its source or author.

More formally, let θQ denote the parameters of a query model, and let θD denote the parameters of a
document model. A user U generates a query by first selecting θQ, according to a distribution p(θQ | U).
Using this model, a query q is then generated with probability p(q | θQ). Note that since a user can potentially
use the same text query to mean different information needs, strictly speaking, the variable U should be
regarded as corresponding to a user with the current context. Since this does not affect the presentation of the
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U
Model selection

-

p(θQ | U)
θQ

Query generation
-

p(q | θQ)
q

S
Model selection

-

p(θD | S)
θD

Document
generation

-

p(d | θD)

d

Figure 1. Generative model of query q and document d.

framework, we will simply refer to U as a user. Similarly, the source selects a document model θD according
to a distribution p(θD | S), and then uses this model to generate a document d according to p(d | θD). Thus,
we have Markov chains U → θQ → q and S → θD → d. This is illustrated in Figure 1.

Let C = {d1,d2, . . . ,dN} be a collection of documents obtained from sources ~S = (S1, ...,SN ). Our
observations are thusU , q, ~S , and C. With this setup, we can now formally define retrieval actions. Informally,
a retrieval action corresponds to a possible response of the system to a query. For example, one can imagine
that the system would return an unordered subset of documents to the user. Alternatively, a system may
decide a ranking of documents and present a ranked list of documents. Yet another possibility is to cluster
the (relevant) documents and present a structured view of documents. Formally, a retrieval action can be
defined as a compound decision involving selecting a subset of documents D from C and presenting them to
the user who has issued query q according to some presentation strategy π. Let Π be the set of all possible
presentation strategies. We can represent all actions by A = {(Di, πi)}, where Di ⊆ C is a subset of C and
πi ∈ Π is some presentation strategy.

In the general framework of Bayesian decision theory, to each such action ai = (Di, πi) ∈ A there is
associated a loss L(ai, θ, F (U), F ( ~S)), which in general depends upon all of the parameters of our model
θ ≡ (θQ, {θi}

N
i=1) as well as any relevant user factors F (U) and document source factors F ( ~S). θi is the

model that generates document di.
The expected risk of action ai is given by

R(Di, πi | U ,q, ~S, C) =

∫

Θ

L(Di, πi, θ, F (U), F ( ~S)) p(θ | U ,q, ~S , C) dθ

where the posterior distribution is given by

p(θ | U ,q, ~S , C) ∝ p(θQ |q,U)

N
∏

i=1

p(θi |di, ~S)

The Bayes decision rule is then to choose the action a∗ with the least expected risk:

a∗ = (D∗, π∗) = argmin
D,π

R(D, π | U ,q, ~S , C)

That is, to select D∗ and present D∗ with strategy π∗.
Note that this gives us a very general formulation of retrieval as a decision problem, which involves

searching for D∗ and π∗ simultaneously. The presentation strategy can be fairly arbitrary in principle, e.g.,
presenting documents in a certain order, presenting a summary of the documents, or presenting a clustering
view of the documents. Practically, however, we need to be able to quantify the loss associated with a
presentation strategy.

We now consider several special cases of the risk minimization framework.

3.1 Set-based Retrieval

Let us consider the case when the loss function does not depend on the presentation strategy, which means
that all we care about is to select an optimal subset of documents for presentation. In this case, the risk
minimization framework leads to the following general set-based retrieval method.
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D∗ = argmin
D

R(D | U ,q, ~S , C)

= argmin
D

∫

Θ

L(D, θ, F (U), F ( ~S)) p(θ | U ,q, ~S , C) dθ

The loss function can encode the user’s preferences on the selected subset. Generally, the loss function will
have to do with the relevance status of the documents selected so that the optimal subset should contain the
documents that are most likely relevant. But other preferences, such as the desired diversity and the desired
size of a subset, can also be captured by an appropriate loss function.

The traditional Boolean retrieval model can be viewed as a special case of this general set-based retrieval
framework, where we have no uncertainty about the query models and document models (e.g., θQ = q and
θi = di), and the following loss function is used:

L(D, θ, F (U), F ( ~S)) =
∑

d∈D

−δ(d,q)

where δ(d,q) = 1 if and only if document d satisfies the Boolean query q; otherwise δ(d,q) = −1. This
loss function is actually quite general, in the sense that if we allow δ(d,q) to be any deterministic retrieval
rule applied to query q and document d, such that δ(d,q) > 0 if d is relevant to q, otherwise δ(d,q) < 0,
then the loss function would always result in a retrieval strategy that involves making an independent binary
retrieval decision for each document according to δ. In particular, the function δ can be defined on a structured
query. One can easily imagine many other possibilities to specialize the set-based retrieval method.

3.2 Rank-based Retrieval

Let us now consider a different special case of the risk minimization framework, where the selected docu-
ments are presented to the user as a ranked list of documents, so a possible presentation strategy corresponds
to a possible ranking of documents. Such a ranking strategy has been assumed in most modern retrieval
systems and models.

Formally, we may denote an action by ai = (Di, πi), where πi is a complete ordering on Di
3. Taking

action ai would then mean presenting the selected documents in D one by one in the order given by πi. This
means that we can denote an action by a sequence of documents. So we will write ai = (dπ1

i
, dπ2

i
, ..., dπk

i
),

where π
j
i is the index of the document ranked at the j-th rank according to the permutation mapping πi.

Let us further assume that our actions essentially involve different rankings of documents in the whole
collection C. That is, A = {(C, πi)}, where πi is a permutation over [1..N ], i.e., a complete ordering of the
N documents in C. To simplify our notations, we will use πi to denote action ai = (C, πi).

In this case, the optimal Bayes decision is given by the following general ranking rule:

π∗ = arg min
π

R(π|q, C,U , ~S)

= arg min
π

∫

Θ

L(π, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ

where θ = (θQ, {θi}
N
i=1).

We see that the loss function is now discriminating different possible rankings of documents.
How do we characterize the loss associated with a ranking of documents? Presenting documents by

ranking implies that the user would apply some stopping criterion – the user would read the documents in
order and stop wherever is appropriate. Thus, the actual loss (or equivalently utility) of a ranking would
depend on where the user actually stops. That is, the utility is affected by the user’s browsing behavior, which
we could model through a probability distribution over all the ranks at which a user might stop. Given this
setup, we can now define the loss for a ranking as the expected loss under the assumed “stopping distribution.”

3We could allow partial ordering in principle, but here we only consider complete ordering.

8



Formally, let si denote the probability that the user would stop reading after seeing the top i documents.
We have

∑N

i=1 si = 1. We can treat s1, ..., sN as user factors given by F (U).

L(π, θ, F (U), F ( ~S)) =

N
∑

i=1

sil(π(1 : i), θ, F (U), F ( ~S))

where l(π(1 : i), θ, F (U), F ( ~S)) is the actual loss that would be incurred if the user actually views the first i

documents according to π. Note that L(π, θ, F (U), F ( ~S)) and l(π, θ, F (U), F ( ~S)) are different: the former
is the expected loss of the ranking under the user’s “stopping probability distribution,” while the latter is the
exact loss of the ranking when the user actually views the whole list.

Assuming that the user would view the documents in the order presented, and the total loss of viewing i

documents is the sum of the loss associated with viewing each individual document, we have the following
reasonable decomposition of the loss:

l(π(1 : i), θ, F (U), F ( ~S)) =

i
∑

j=1

l(dπj |dπ1 , ..., dπj−1 , θ, F (U), F ( ~S))

where l(dπj |dπ1 , ..., dπj−1 , θ, F (U), F ( ~S)) is the conditional loss of viewing dπj given that the user has
already viewed (dπ1 , ..., dπj−1 ).

Putting all these together, we have

π∗ = arg min
π

R(π|q, C,U , ~S)

= arg min
π

N
∑

i=1

si

i
∑

j=1

∫

Θ

l(dπj |dπ1 , ..., dπj−1 , θ, F (U), F ( ~S))

× p(θ|q, C,U , ~S)dθ

Define the following conditional risk

r(dk |d1, ...,dk−1,q, C,U , ~S)
def
=

∫

Θ

l(dk|d1, ...,dk−1, θ, F (U), F ( ~S))

× p(θ|q, C,U , ~S)dθ

which can be interpreted as the expected risk of the user’s viewing document dk given that d1, ...,dk−1 have
already been previously viewed. We can write

R(π|q, C,U , ~S) =

N
∑

i=1

si

i
∑

j=1

r(dπj |dπ1 , ..., dπj−1 ,q, C,U , ~S)

=

N
∑

j=1

(

N
∑

i=j

si)r(dπj |dπ1 , ..., dπj−1 ,q, C,U , ~S)

This is the general framework for ranking documents within the risk minimization framework. It basi-
cally says that the optimal ranking minimizes the expected conditional loss (under the stopping distribution)
associated with sequentially viewing each document.

We see that the optimal ranking depends on the stopping distribution si. If a user tends to stop early, the
optimal decision would be more affected by the loss associated with the top ranked documents; otherwise,
it would be somehow “equally” affected by the loss associated with all the documents. Thus, the stopping
probability distribution provides a way to model a “high-precision” (early stopping) preference or a “high-
recall” (late stopping) preference. The sequential decomposition of the loss is reasonable when presenting a
ranked list to the user. Clearly, when using other presentation strategies (e.g., clustering), such decomposition
would not be appropriate.

We now discuss two general cases of the loss function.
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3.2.1 Independent Loss Functions

Let us first consider the case when the loss of viewing each document is independent of viewing others. That
is,

l(dπj |dπ1 , ..., dπj−1 , θ, F (U), F ( ~S)) = l(dπj , θ, F (U), F ( ~S))

which means

l(π(1 : i), θ, F (U), F ( ~S)) =
i

∑

j=1

l(dπj , θ, F (U), F ( ~S))

In this case, the expected risk for ranking π is

R(π|q, C,U , ~S) =

N
∑

i=1

si

i
∑

j=1

r(dπj |q, C,U , ~S)

=
N

∑

j=1

(
N

∑

i=j

si)r(dπj |q, C,U , ~S)

We see that the risk of π is a weighted sum of the risk of viewing each individual document. As the rank
increases, the weight decreases, with the weight on the first rank being the largest (i.e.,

∑N

i=1 si). Thus, the
optimal ranking π∗, independent of {si}, is in ascending order of the individual risk:

r(d|q, C,U , ~S) =

∫

Θ

l(d, θ, F (U), F ( ~S))p(θ|q, C,U , ~S)dθ (2)

This is equivalent to the situation when we assume each possible action is to present a single document.
The loss function l(d, θ, F (U), F ( ~S)) can be interpreted as the loss associated with presenting/viewing doc-
ument d, or equivalently the expected utility of presenting document d. Equation 2 thus specifies a general
optimal ranking strategy which is very similar to the Probability Ranking Principle (Robertson, 1977); this
connection will be further discussed in Section 5.

In general, there could be many different ways of specifying the loss function, and a different loss function
would lead to a different ranking function. It has been shown in (Lafferty and Zhai, 2001) that with appropri-
ate choices of reasonable loss functions, many existing rank-based retrieval models can be derived as in the
risk minimization framework, including the vector space model, classific probabilistic retrieval model, and
the recently proposed language modeling approach, which is actually based on the same notion of probability
of relevance as the classic probabilistic retrieval model (Lafferty and Zhai, 2003). It has also been shown in
(Zhai and Lafferty, 2002; Zhai, 2002) that new effective retrieval models, particularly those using statistical
language models, can be systematically developed using the risk minimization framework.

3.2.2 Dependent Loss Functions

We have demonstrated that how the risk minimization framework can recover existing retrieval models and
motivate some interesting new retrieval models through independent loss functions. However, an independent
loss function is rarely an accurate model of real retrieval preferences; the loss of viewing one document
generally depends on the documents already viewed. For example, if the user has already seen the same
document or a similar document, then the document should incur a much greater loss than if it is completely
new to the user. In this section, we discuss dependent loss functions.

When an independent loss function is used, we can derive the exact optimal ranking strategy (i.e., equa-
tion 2) which does not depend on the stopping probability distribution and can be computed efficiently.
However, when a dependent loss function is used , the complexity of finding the optimal ranking makes the
computation intractable. One practical solution is to use a greedy algorithm to construct a sub-optimal rank-
ing. Specifically, we can “grow” the target ranking by choosing the document at each rank, starting from the
very first rank. Suppose we already have a partially constructed ranking π(1 : i), and we are now choosing
the document at rank i + 1. Let k be a possible document index to be considered for rank i + 1, and let
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π(1 : i, k) represent the ordering (dπ(1:i)1 , ..., dπ(1:i)i , dk). Then, the increase of risk for picking dk at rank
i + 1 is

δ(k|π(1 : i)) = R(π(1 : i, k)|q, C,U , ~S) − R(π(1 : i)|q, C,U , ~S)

= si+1(r(dk |dπ(1:i)1 , ..., dπ(1:i)i ,q, C,U , ~S) +

i
∑

j=1

r(dj |dπ(1:i)1 , ..., dπ(1:i)j−1 ,q, C,U , ~S))

To extend π(1 : i), we should choose

k∗ = arg min
k

δ(k|π(1 : i))

= arg min
k

r(dk |dπ(1:i)1 , ..., dπ(1:i)i ,q, C,U , ~S)

Thus, at each step we just need to evaluate

δ
′

(k|π(1 : i)) = r(dk |dπ(1:i)1 , ..., dπ(1:i)i ,q, C,U , ~S) (3)

and choose the k that minimizes δ
′

(k|π(1 : i)).
This gives us a general greedy and context-dependent ranking algorithm. Interestingly, due to the use of

a greedy strategy, we see again that the “optimal” ranking does not depend on the stopping probabilities si!
In this next section, we discuss how we may instantiate this general algorithm with specific dependent loss
functions in the context of a non-traditional ranking task – subtopic retrieval.

4 Models for Subtopic Retrieval

4.1 The problem of subtopic retrieval

A regular retrieval task is often framed as retrieving relevant documents based on the assumption that doc-
ument is the information unit under consideration. However, a topic usually has some subtopic structure, and
involves different subtopics. For example, a student doing a literature survey on “machine learning” may be
most interested in finding documents that cover representative approaches to machine learning, and the rela-
tions between these approaches. In general, a topic often has a unique structure that involves many different
subtopics. A user with a high recall retrieval preference would presumably like to cover all the subtopics,
and would thus prefer a ranking of documents such that the top documents cover different subtopics. This
problem, referred to as “aspect retrieval,” was first studied in the TREC interactive track (Over, 1998), where
the purpose was to study how an interactive retrieval system can best support a user gather information about
the different aspects of a topic.

How can we formally define a retrieval model for such a subtopic retrieval problem? Clearly, this would
require non-traditional ranking of documents, since ranking solely based on relevance would not be optimal.
We thus need non-traditional ranking models that can not only model relevance but also model redundancy,
novelty, or subtopics. To model the subtopic retrieval task in the risk minimization framework, we would
need a dependent loss function. One possible loss function is the Maximal Marginal Relevance (MMR) loss
function, in which we encode the preference for retrieving documents that are both topically relevant and
novel (Carbonell and Goldstein, 1998). Essentially, we want to retrieve relevant documents, and at the same
time, minimize the chance for a user to see redundant documents as the user goes through the ranked list of
documents. Intuitively, as we reduce the redundancy among documents, we can expect the coverage of the
same subtopic to be minimized and thus the coverage of potentially different subtopics may be more likely.
We now discuss this type of loss function in detail.
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4.2 Maximal Marginal Relevance (MMR) Loss Functions

The idea of Maximal Marginal Relevance (MMR) ranking is first proposed and formalized in (Carbonell
and Goldstein, 1998). It is based on the assumption that we need to consider not only the relevance value, but
also the novelty (or equivalently, redundancy) in the presented documents when ranking a set of documents.
Informally, given a set of previously selected documents, the next best document is one that is both relevant
to the query topic and different from the already selected documents.

In the risk minimization framework, we can encode such preferences with a conditional loss function
l(dk|d1, ..., dk−1, θ, F (U), F ( ~S)) that “balances” the relevance value and the redundancy value of a docu-
ment.

Let lMMR(dk |d1, ..., dk−1, θQ, θ1, ..., θ
k) be such a loss function, the conditional risk is then

r(dk |d1, ..., dk−1,q, C,U , ~S)

=

∫

Θ

lMMR(dk |d1, ..., dk−1, θQ, θ1, ..., θk)p(θ|q, C,U , ~S)dθ

If we assume that the parameters θ are concentrated at the mode θ̂ ≡ (θ̂Q, {θ̂i}
k
i=1) , then the posterior

distribution is close to a delta function. In this simplified case, ranking based on the conditional risk is
approximately equivalent to ranking based on the value of the loss function at the mode, i.e.,

r(dk |d1, ..., dk−1,q, C,U , ~S)
rank
≈ lMMR(dk|d1, ..., dk−1, θ̂Q, θ̂1, ..., θ̂k)

An MMR loss function would generally be a combination of relevance measure and novelty measure to
reflect our desire of retrieving a document that is both relevant and novel. Technically, there could be many
different ways to specify such a loss function. Indeed, deriving a well-motivated one is still an open research
question (Zhai, 2002).

Suppose we make the assumption that a relevance score and a novelty score can be computed indepen-
dently. Then, we can define our loss function as a direct combination of the two scores. Formally, let
SR(θk; θQ) be any relevance scoring function and SN (θk; θ1, ..., θk−1) any novelty scoring function. An
MMR loss function can be defined as a combination of the two scoring functions as follows.

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = f(SR(θk; θQ), SN (θk; θ1, ..., θk−1), µ)

where µ ∈ [0, 1] is a relevance-novelty trade-off parameter, such that

lMMR(dk|d1, ..., dk−1, θQ, θ1, ..., θk−1)
rank
=

{

SR(θk; θQ) if µ = 0
SN(θk ; θ1, ..., θk−1) if µ = 1

One possible such combination is a linear interpolation of SR and SN given by

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1

1 ) = (1 − µ)SR(θk; θQ) + µSN (θk; θ1, ..., θk−1)

which is precisely the original MMR formula presented in (Carbonell and Goldstein, 1998). Clearly, this
loss function makes sense only when the range of the function SR and that of SN are comparable (e.g., when
both SR and SN are KL-divergence or other comparable functions).

When the relevance and novelty/redundancy are computed with a probabilistic model, we can use the
following general loss function:

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 ) = c1p(Rel |d)p(New |d)

+c2p(Rel |d)(1 − p(New |d))

+c3(1 − p(Rel |d)p(New |d)

+c4(1 − p(Rel |d))(1 − p(New |d))

where c1, c2, c3, and c4 are cost constants; p(Rel|d) is the probability that document d is relevant; and
p(New|d) is the probability that d is new with respect to documents d1, ...,dk−1.
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Since whether a non-relevant document carries any new information is not interesting to the user, we
could reasonably assume that c3 = c4. Furthermore, we can also reasonably assume that there is no cost if
the document is both relevant and (100%) new, i.e., c1 = 0. Under these two assumptions, we have

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1
1 )

= c2p(Rel |d)(1 − p(New |d)) + c3(1 − p(Rel |d)

For any reasonable loss function, both c2 and c3 should be some positive cost, and usually c3 > c2. In general,
c2 and c3 may change according to k, or even d1, ..., dk−1. Intuitively, c2 is the cost of seeing a relevant, but
redundant document, whereas c3 the cost of seeing a non-relevant document. Clearly, when c2 = 0, i.e., the
user does not care redundancy, the loss function would be essentially based on the probability of relevance,
just like what we would expect. Below we assume that c2 > 0, which allows us to re-write the loss function
in the following equivalent form for the purpose of ranking documents:

lMMR(dk|d1, ..., dk−1, θQ, {θi}
k−1

1 ) = c3 + c2p(Rel |d)(1 −
c3

c2

− p(New |d))

rank
= p(Rel |d)(1 −

c3

c2

− p(New |d))

Note that a higher p(New |d) always helps reduce the loss, and when c3

c2

≥ 1, a higher p(Rel |d) also means
a smaller loss. However, the amount of loss reduction is affected by the cost ratio c3

c2

. This ratio indicates
the relative cost of seeing a non-relevant document compared with seeing a relevant but redundant document.
When the ratio is large, i.e., c3 >> c2, the influence of p(New |d) could be negligible. This means that
when the user has low tolerance for any non-relevant document, our optimal ranking would essentially be
relevance-based, and not affected by the novelty of documents. When c3 = c2, we would score documents
based on p(Rel|d)p(New|d), which is essentially the scoring formula for generating temporal summaries
proposed in (Allan et al., 2001), where p(Rel|d) is referred as p(Useful|d). In practice, there would be a
compromise between retrieving documents with new content and avoid retrieving non-relevant documents.

In (Zhai, 2002; Zhai et al., 2003), this loss function is explored with p(Rel|d) being assumed to be
proportional to p(q|d) and p(New|d) being estimated with a mixture language model.

A common deficiency in the way we combine the relevance score and the novelty score in our MMR
loss function is the assumption of independent measurement of relevance and novelty. In other words, we
do not have a direct measure of relevance of the new information contained in a new document. Thus a
document formed by concatenating a seen (thus redundant) relevant document with a lot of new, but non-
relevant information may be ranked high, even though it is useless to the user. Several alternative MMR loss
functions that directly measure the relevance of the new information are explored in (Zhai, 2002).

It is important to note that there are other dependent loss functions that may be more appropriate for the
subtopic retrieval problem; indeed MMR loss functions are not optimizing the subtopic coverage directly.
Another interesting type of loss function is the Maximal Diverse Relevance (MDR) loss function, in which
we encode the preference for retrieving documents that best supplement the previously retrieved documents in
terms of covering all the subtopics. This means we would need to model both topical relevance and subtopics
of documents. Some preliminary exploration of the MDR loss functions has been reported in (Zhai, 2002)
where the Probabilistic Latent Semantic Indexing (PLSI) model (Hofmann, 1999) and the Latent Dirichlet
Allocation (LDA) model (Blei et al., 2003) have been used for subtopic modeling.

5 Discussion

5.1 A Decision-Theoretic View of Retrieval

Treating retrieval from a decision-theoretic view is not new. In the 1970’s, people were already studying
how to choose and weight indexing terms from a decision-theoretic perspective (Bookstein and Swanson,
1975; Harter, 1975; Cooper and Maron, 1978). The probability ranking principle had also been justified based
on optimizing the statistical decision about whether to retrieve a document (Robertson, 1977). However, the
action/decision space considered in all these early works was limited to a binary decision regarding whether
to retrieve a document or regarding whether to assign an index term to a document, and none of the work gave
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a complete decision-theoretic formal model for retrieval. The treatment of retrieval as a decision problem was
also discussed in (Wong et al., 1991; Dominich, 2001).

In the risk minimization framework, we have explicitly and formally treated the retrieval problem as a
decision-making problem. The decision problem is a more general one where the action space, in principle,
consists of all the possible actions that the system can take in response to a query. The scope of the decision
space is a significant departure from any existing decision-theoretic treatment of retrieval. Such a general
decision-theoretic view explicitly suggests that retrieval is modeled as an interactive process that involves
cycles of a user reformulating the query and the system presenting information. We believe that this is the
first time a user variable (U) and a document source variable (S) have been explicitly and formally introduced
in an operational retrieval model. Strictly speaking, U actually represents a user with a certain information
need, thus when the same user enters another query, it should be treated as a different U (Robertson, 2002).
However, it is not hard to imagine that we could factor out the real user and the retrieval context by using
two separate variables. Also, we have introduced a separate source variable S for each document, as if
they are all independent. This is, again, to simplify the presentation of the framework; we can easily put
constraints on these source variables, e.g., requiring all of them to be identical. The explicit introduction
of U and S makes it possible for us to consider any interesting user factors and document source factors
when specifying the loss function. For example, the high-precision versus high-recall preferences can be
encoded by assuming a different stopping probability distribution. Interestingly, as shown formally in this
chapter, when we assume an independent loss function or use a greedy algorithm to approximate the optimal
ranking based on a sequentially additive loss function, the optimal solution does not depend on the stopping
probability distribution! The redundancy among documents can be captured using a dependent loss function.
Other factors such as readability of documents could also be incorporated as long as we have a model for
readability.

Another major difference between the risk minimization framework and the early decision-theoretic treat-
ment of indexing is that the early work, such as (Cooper and Maron, 1978), takes the utility in a frequency
sense, i.e., the expected utility over all possible future uses, whereas we take a Bayesian view and consider
the utility with respect to the current user.

The decision-theoretic view of retrieval makes it possible to model an interactive retrieval process as a
sequential decision process, where the user variable U changes over time. Actually, if we allow the system
to accept any user response, rather than just a text query, as input, then we are really going beyond retrieval
toward a more general (interactive) information access system.

5.2 Risk Minimization and the Probability Ranking Principle

The Probability Ranking Principle (PRP) has often been taken as the foundation for probabilistic retrieval
models. As stated in (Robertson, 1977), the principle is based on the following two assumptions:

“(a) The relevance of a document to a request is independent of the other documents in the
collection;
(b) The usefulness of a relevant document to a requester may depend on the number of relevant
documents the requester has already seen (the more he has seen, the less useful a subsequent one
may be).”

Under these assumptions, the PRP provides a justification for ranking documents in descending order of
probability of relevance, which can be evaluated separately for each document.

From the risk minimization framework, we have derived a general ranking formula for ranking documents
based on an ascending order of the expected risk of a document, which can also be computed separately for
each document. And we have also made two assumptions:

• Independent loss function: We assume that the loss associated with a user’s viewing one document
does not depend on any other documents that the user may have seen.

• Sequential browsing: We assume that, when presented with a ranked list of documents, a user would
browse through the list sequentially according to the ranking.
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It is interesting to note the difference and relationship between these two assumptions and the two as-
sumptions made in (Robertson, 1977). The sequential browsing assumption is also made in (Robertson,
1977), though it is not explicitly stated (Robertson, 2002), but our independent loss assumption is stronger
than the independent relevance assumption, since it is possible to define a dependent loss function based on
independent relevance. Indeed, the second assumption in (Robertson, 1977) implies that the utility (or equiv-
alently, the loss) of retrieving one document depends on the number of relevant documents that are ranked
above this document, though it does not directly depend on the relevance status of any specific document. The
price for this weaker assumption, however, is that the PRP is no longer guaranteed to give a ranking that is
optimal globally, but only one that is optimal as a greedy algorithm. This assumption that a greedy algorithm
is used to construct the optimal ranking is implicit in (Robertson, 1977), since the decision problem involves
whether to retrieve one single document rather than choosing a ranking of all documents. In contrast, under
our assumptions, ranking based on the expected risk can be shown to be globally optimal.

The PRP has several limitations as discussed in, e.g., (Cooper, 1994).
First, the PRP assumes that document usefulness is a binary property, but in reality it should really be a

matter of degree. The independent loss ranking function that we derived does not have this limitation. Indeed,
it is possible to derive the PRP in the risk minimization framework by assuming that the loss function depends
only on a binary relevance variable.

Second, a ranking of documents by probability of usefulness is not always optimal. Cooper gave such
an example, which essentially shows that the independent relevance assumption may not be true. Robert-
son discussed informally two ways to extend the PRP to address the possible dependency among documents
(Robertson, 1977). Both have been captured in the risk minimization framework. The first is to go from
ranking based on probability of relevance to ranking based on expected utility, which we achieve by using a
loss function in the risk minimization framework. The second is essentially the greedy algorithm for rank-
ing based on the conditional loss function. Thus, in the risk minimization framework, we provide a more
formalized way to go beyond the PRP.

Indeed, as stated in (Robertson, 1977), “the estimation of probability of relevance for each document may
not be the most appropriate form of prediction. The two main questions are:

• On the basis of what kinds of information can the system make the prediction?

• How should the system utilize and combine these various kinds of information?

These questions represent, indeed, the central problem of retrieval theory.”
The risk minimization framework provides a formal answer to both of the questions. The information

available to the system includes the user (U), the document source ( ~S), the query (q), and the documents (C).
A “prediction” consists of selecting a subset of documents and presenting them in some way. However, one
can easily imagine other possible “predictions.” These factors are combined in a Bayesian decision theoretic
framework to compute an optimal prediction.

5.3 The Notion of Relevance

The risk minimization framework was originally motivated by the need for a general ranking function
that allows us to view several different ranking criteria, including the query-likelihood criterion used in the
language modeling approach, within the same unified framework. As discussed in the existing literature, the
retrieval problem may be decomposed into three basic components: representation of a query, representation
of a document, and matching the two representations. With an emphasis on the operationality of the frame-
work and probabilistic modeling, we make three corresponding assumptions: (1) A query can be viewed as an
observation from a probabilistic query model; (2) A document can be viewed as an observation from a prob-
abilistic document model; (3) The utility of a document with respect to a query (i.e., the ranking criterion)
is a function of the query model and document model. Flexibility in choosing different query models and
document models is necessary to allow different representations of queries and documents. The flexibility of
choosing the loss function is necessary in order to cover different notions of relevance and different ranking
strategies.

As a result of these assumptions, the representation problem is essentially equivalent to that of model
estimation, while the matching problem is equivalent to the estimation of the value of a utility function based
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on the observed query and document. In Bayesian decision theory, utility is modeled by a loss function; a loss
value can be regarded as a negative utility value. Thus, we can say that the notion of relevance taken in the
risk minimization framework is essentially expected utility value, which reflects both the user’s preferences
and the uncertainty of the query and document models. Such a notion of relevance is clearly more general
than the traditional notion of independent topical relevance, since the utility can depend on all the factors that
might affect a user’s satisfaction with the system’s action. For example, such factors may include a user’s
perception of redundancy or special characteristics of documents or the collection. This can be seen formally
from the dependency of the loss function on variables such as U , ~S, and C.

The traditional notion of independent relevance can be obtained as a special case of this general utility no-
tion by making an independent assumption on the loss function. Under this assumption, the optimal ranking is
to rank documents based on their respective expected loss/risk. This expected risk essentially “measures” the
relevance status of a document with respect to a query. It is interesting to note that such a measure explicitly
captures two different types of uncertainties. First, it is assumed that the “content” or “topic” (represented by
a model) underlying a document or query is uncertain; given a document or a query, we can only estimate the
model. This uncertainty reflects the system’s inability to completely understand the underlying content/topic
of a query or document, so it can be called “topic uncertainty.” Second, even if we know the true model
for the query and the document, the relevance value of the document model with respect to the query model
is still uncertain and vague. This uncertainty reflects our incomplete knowledge of the user’s true relevance
criterion, and can be called “relevance uncertainty.” The topic uncertainty is handled through computing an
expectation over all possible models, while the relevance uncertainty is resolved through the specification of
a concrete loss function.

As we make different approximation assumptions to simplify the computation of the risk minimization
formula, we end up resolving these uncertainties in different ways. In the general similarity-based model, for
example, we resolve the topic uncertainty by picking the most likely model and rely on a similarity/distance
function to measure the relevance uncertainty. The probabilistic relevance model (including the language
modeling approach), however, assumes a binary relevance relationship between a query and a document, and
addresses the relevance uncertainty and the topic uncertainty within one single probabilistic model. With a
binary relevance relationship, a document is either relevant or non-relevant to a query, nothing in between,
i.e., the different degree of relevance is not modeled; this is different from the similarity-based model.

5.4 Statistical Language Models for Text Retrieval

The use of language models in the risk minimization framework makes the framework quite different
from other general retrieval frameworks such as Kraft’s fuzzy models (Kraft et al., 1998), Situation models
(Huibers and Bruza, 1996), and “Axiomatic models” (Dominich, 2000). In particular, it makes the framework
more operational. Indeed, an operational document ranking formula can always be derived by specifying
three components: (1) The query model p(q | θQ) and p(θQ | U); (2) The document model p(d | θD) and
p(θD | S); (3) The loss function. A different specification of these components leads to a different operational
model.

It is thus clear that if there is any parameter involved in the retrieval formula derived from the risk min-
imization framework, then it would be from either the loss function or the language models for documents
and queries. Parameters associated with the loss function generally represent a user’s retrieval preferences,
and thus should be set by the user in some meaningful way. For example, the level of redundancy tolerance
could be such a parameter, and it must be set by a user, since different users may have different preferences;
a high-recall preference may imply more tolerance of redundancy. On the other hand, parameters associated
with the language models, in principle, can be estimated automatically. For example, in the following chap-
ters, we will see parameters that control the smoothing of language models. Because such parameters are
involved in statistical language models, it is possible to exploit statistical estimation methods to estimate the
values of these parameters, thus providing a principled way for setting retrieval parameters.

Being able to estimate retrieval parameters is a major advantage of using language models for information
retrieval. For example, the two-stage language model has been show to achieve excellent retrieval perfor-
mance through the completely automatic setting of retrieval/smoothing parameters (Zhai and Lafferty, 2002).

Another advantage of using language models is that we can expect to achieve better retrieval performance
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through the more accurate estimation of a language model or through the use of a more reasonable language
model. Thus, we will have more guidance on how to improve a retrieval model than in a traditional model.
This will be demonstrated by another new retrieval model, in which feedback documents are exploited to
improve the estimation of the query language model. We will show that the improved query model does
indeed lead to improved retrieval performance in general.

Finally, language models are also useful for modeling the sub-topic structure of a document and the re-
dundancy between documents. These will also be explored in the thesis as a way to achieve a non-traditional
ranking of documents, e.g., to minimize redundancy or maximize sub-topic coverage.

6 Conclusions and Future Work

This paper presents a new general probabilistic framework for text retrieval based on Bayesian decision
theory. In this framework, queries and documents are modeled using statistical language models, user pref-
erences are modeled through loss functions, and retrieval is cast as a risk minimization problem. This risk
minimization framework not only unifies several existing retrieval models within one general probabilistic
framework, but also facilitates the development of new principled approaches to text retrieval through the use
of statistical language models. We have discussed how we may derive many interesting special cases of the
framework that both cover known existing retrieval models and lead to new models for subtopic retrieval that
go beyond independent relevance.

One fundamental difference between the risk minimization framework and any existing retrieval frame-
work is that the risk minimization framework treats the entire retrieval problem as a decision problem, and
incorporates statistical language models as major components in the framework. While previous work has
also treated retrieval from a decision-theoretic view, no previous work has given a complete decision-theoretic
formal model for retrieval. The risk minimization framework is thus the first complete formal treatment of
retrieval in statistical decision theory. This is also the first time a user variable (U) and a document source
variable (S) have been explicitly and formally introduced in an operational retrieval model. The decision
space in the risk minimization framework, in principle, may consist of all the possible actions that the system
can take in response to a query, which allows us to treat the retrieval problem in the most general way. Such a
general decision-theoretic view explicitly suggests that retrieval can be modeled as an interactive process that
involves cycles of a user’s reformulating the query and the system’s presenting information. Indeed, with the
risk minimization framework, we can condition the current retrieval decision on all the information about the
retrieval context, the user, and the interaction history, to perform context-sensitive retrieval. In contrast, the
traditional retrieval models are quite restricted due to their reliance on unrealistic simplification assumptions
about relevance (e.g., the independent relevance assumption). They are generally inadequate for handling
user factors such as redundancy tolerance and readability, and cannot model an interactive retrieval process
without relying on heuristics.

The risk minimization framework makes it possible to systematically and formally study general optimal
retrieval strategies. For example, through making different assumptions about the loss function for ranking
we have derived an optimal ranking principle, which addresses several limitations of the probability ranking
principle. Specifically, when assuming an independent loss function and a sequential browsing model, we
can show that the optimal ranking is to rank documents according to the expected risk of each document,
which can be computed independently for each document. An interesting implication is that such a ranking
is optimal whether the user has a high-precision or high-recall retrieval preference.

The general incorporation of statistical language models in a retrieval framework is another important con-
tribution of the risk minimization framework. In a traditional model, the parameters are often empirically
motivated, so heavy empirical tuning of parameters is always necessary to achieve good retrieval perfor-
mance. In contrast, the retrieval parameters in the risk minimization framework are generally introduced as
part of a statistical language model. This makes it possible to exploit statistical estimation methods to im-
prove retrieval performance and set retrieval parameters automatically as demonstrated in (Zhai and Lafferty,
2001; Zhai and Lafferty, 2002).

Due to its generality in formalizing retrieval tasks, the risk minimization retrieval framework further allows
for incorporating user factors beyond the traditional notion of topical relevance. Traditionally, it has been hard
to formally model such factors as redundancy and sub-topics within a retrieval model, though a general linear
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combination of relevance measure and novelty measure has been given in (Carbonell and Goldstein, 1998).
We presented language models and dependent loss functions that lead to non-traditional ranking models
for the subtopic retrieval task. Preliminary exploration of these non-traditional retrieval models has shown
promising results (Zhai, 2002; Zhai et al., 2003), demonstrating that the risk minimization framework can be
exploited to model such a non-traditional retrieval problem as subtopic retrieval.

The risk minimization framework opens up many new possibilities for developing principled approaches
to text retrieval, and serves as a general framework for applying statistical language models to text retrieval.
The special cases discussed in this paper represent only a small step in exploring the full potential of the risk
minimization framework. There are many interesting future research directions. Naturally, it is possible to
further exploit the framework to study automatic parameter setting, document structure analysis, and non-
traditional retrieval tasks such as subtopic retrieval. In a real retrieval situation, the goal of satisfying a user’s
information need is often accomplished through a series of interactions between the user and the retrieval
system. With the risk minimization framework, we can formally incorporate all these variables and derive
personalized and context-sensitive interactive retrieval models. It would be very interesting to extend the risk
minimization framework to formalize an interactive retrieval process so as to optimize the global and long
term utility over a sequence of retrieval interactions.
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