
Insertion Sort

Idea: by Ex.
Given the following sequence to be sorted
34 8 64 51 32 21
When the elements 1, … p are sorted, then the next element, p+1 is inserted within these to
the right place after some comparisons.

 We take the first element: 34 is sorted
 We take the second element: 8<34 this means that we are going to replace

them
 8 34 all the element remained are unchanged
 .
 .
 .
 We take the pth element:
 8 34 64 compare the p-1th element
 we leave 64 in place
 8 34 64 are already sorted
 We take the p+1th element
 8 34 64 51 compare with the largest
 > we move 1 position further and compare
 < we swap the elements

 8 34 51 64 we get a new element in the sequence sorted
 8 34 51 64 32 21

 8 21 32 34 51 64

Code:

FOR p = 2 TO N
 j = p tmp=a(p)
 WHILE tmp < a(j-1)
 a(j) = a(j-1) {swap}
 j = j-1
 ENDWHILE
 a(j) = tmp
ENDFOR

Bubble Sorting

 O (N2) – Insertion Sort (we can see from the code)
 Θ (N2) tight bound
(number of comparisons, number of swaps)
 when elements are „almost” sorted (many of them are already

in the correct order) the Insertion Sort algorithm needs just a
relatively small number of comparisons and swaps. Then it is
effective.

Shell Sort

Idea: divide the sequence into groups

1. induces great order into the initial random sequence relatively fast
2. then apply insertion sort to get final order

to compare element which are relatively great distance from each other
1st step: half the seqiunece (4 elements/group), and compare corresponding elements (four groups,
two elements/group)

7 1 3 5 0 9 2 10

Each groups contains 2 elements:

7 1 3 5
0 9 2 10 4 groups with two elements /group

1st group 2nd group 3rd 4th

Now apply insertion sort for each groups:

0 1 2 5
7 9 3 10

0 1 2 5 7 9 3 10 our new sequence after the first step

now apply the same idea again: divide the first half into 2 subhalves
 form again the groups

0 1
2 5 2 groups with 4 elements/group
7 9
3 10

Apply now insertion sort for each groups. We get

 0 1

2 5
 3 9 we are going to have 1 swap: 2 and 3 are
7 10 swapt

0 1 2 5 3 9 7 10 after the second step

We apply the same again : we divide the subhalves into subhalves until every subhalf contains

just 1 element . So we get one group that contains every elements.
We get:

0 1 2 5 3 9 7 10 now apply insertion sort

effective, because this is the „almost”
sorted sequence

 so insertion sort will be very fast

Code:

FOR (gap = N/2; gap > 0; gap/=2) {N/2: the length of the half; gap is going to be halfed}
 FOR (i = gap; i < N; i++)
 FOR (j = i – gap; j >= 0 && a [j] > a [j + gap]; j - = gap)
 { temp = a [j];
 a[j] = a [j + gap];
 a [j + gap] = temp;
 … }

proved very fast in practice
O (NlogN) < O (N2) the complexity

for certain values – better choice – of the gap Θ (N1,5), O (N1,25)

the difficult problem is evaluation of its complexity
 not final
 Θ(N) < complexity < Θ (N2)

A better choice of the gap:
 …, 1093, 364, 121, 40, 13, 4, 1
a1, a2, …, an to be sorted

find the largest first

gap = 1
REPEAT
 gap = 3* gap +1
UNTIL gap > n

REPEAT
 gap = gap DIV 3
 DO INSERTION SORT …
 with

UNTIL gap = 1
END

complexity: Θ (N1,25)

Merge Sort

idea: „divide et impera”
What does merging mean?

given two sorted sequences,
produce one sequence with the property:

• contains every element of the two given sequences, and
• sorted the same way (descendingly / ascendingly)

Ex. working with files

Ex.

S1: 1 3 7 10 may have different lengthes

S2: 5 6 8

S: 1 3 5 6 7 8 10 we take the first elements

simple, but very difficult to code
in practice

Code Merging

• main memory S1, S2, S
• files on the disk

attention: when the end of a sequence is detected

Merge Sort Ex.

 34 56 78 12 45 3 99 23

1. divide phase

34 56 78 12 45 3 99 23

2. we divide every half to subhalves

divide
34 56 78 12 45 3 99 23

3. we divide every subhalf again to subhalves:

34 56 78 12 45 3 99 23

S1 S2

Merge algorithm

34 56 12 78 3 45 23 99

we apply the same Merge alg.
 conquer
12 34 56 78 3 23 46 99

 finally we apply Merge alg. again

 3 12 23 34 45 56 78 99

the final order

Code

Merge Sort

 mid = (first + last)
 mergesort (first, mid)
 mergesort (mid + 1, last)
 merge

Merge Sort:

• recursive algorithm
• complexity

T (N) = 2 T (N/2) + N
telescoping
T (N) = O (NlogN)

 very tricky another algorithm

HEAPSORT

heap: an array represented as a binary tree obeying the heap property

every node X (in tree)

the key value Key (Parent(X)) ≥ Key (X)
 ≥

Ex. for a heap:
13 21 16 24 31 19 68 65 26 32
represented as a binary tree:
 13

21 16 the heaps property is satisfied, because
every node is less or equal to their

24 31 19 68 children

 65 26 32

1. very interesting property of the heap from a programming point of view:

every element i:

 we need no pointers!
left child right child we simply need +, *

2i 2i+1

this yields a fast algorithm

2. property: A binary tree with height h has between 2h and 2h+1-1 nodes
justification: for this property:

h = 0 N = 1 just contains the root
 1 = 20 = 2h

h = 1 N = 3 (root + at least one child)
 3 = 21 + 1 = 2h + 1 = 2h + (21 – 1)

h = 2 N = 7 7 = 2h + 3 = 2h + (22-1)

N ≤ number of the leaves + number of the nodes of the previous tree
N ≤ 2h + 2h –1 (= 2*2h = 2h+1)

the max. number of nodes: 2h+1 – 1
the min.number of nodes: (if every level contains just 1 node) 2h 2h ≤ N ≤ 2h+1 – 1

 h=  log N = O (logN)

Heapify:
 heapify
 Given an arbitrary array make it a heap!

 16

 4 10

 14 7 9 3 Does it satisfy the heap property?

 2 8

i = 1 • 1st level
i = 2 •
i = 3 heap property is not satisfied
 we have to swap the element according to the property

 16

 ≤
4 10 •

 4 14

 14 7 4 7

 .
 .
 . we continue analysing
Heapify code:

 Heapify (A, i)
 MAX = max (A (i), Left (A (i)), Right (A (i)))
 IF MAX ≠ A (i) swap (A(i), max (Left(A(i)), Right (A(i))))
 Heapify (A, MAX)
 { recursively }

the selection of max. (time) : Θ (1)
the heapify : Θ (h)

Θ (1) + Θ (h) = Θ (h) = O (h) = O (log N)

Convert an array into a heap

Build_Heap (A)
 FOR i =  length (A) / 2  DOWNTO 1 DO Heapify (A, i)

O (N) * O (logN) = O (NlogN) time

HeapSort (A)
 Build_Heap (A) { O (NlogN) }
 FOR i = length (A) DOWNTO 2 { n-1 calls constant }
 DO swap (A(1), A(i))
 Heapsize (A) = Heapsize (A) – 1
 Heapify (A,1) { O (logN) }

O (N logN) + (N-1)* O (logN) = O (N logN)

after executing Build_Heap we have a heap: we will get the array in ascending order

 16 16, 14, … 14

 4 10 8 10

 8 7 9 3 4 7 9 3

 2 4 1 2 1 …

Bubble Sort: O (N2)
Insertion Sort: O (N2)
Quick Sort: O (NlogN)
Merge Sort: O (NlogN)
Shell Sort:: O (N1,5)
Heap Sort: O (N logN)

in average

∀ S comparisons Ω (NlogN) lower bound
∀ : internal sorting methods the elements to be sorted are all in the main memory.
When sorting in real time on-line : different algorithm would be needed (so sorting on disk diff.
algorithm would be required, for example Merge can de used)

Special cases:

pre-defined requirements, some certain properties

only then: sorting algorithm : LINEAR TIME

	Insertion Sort
	Bubble Sorting
	Shell Sort

