
Insertion Sort 
 

Idea:  by Ex.  
Given the following sequence to be sorted 
34 8 64 51 32 21 
When the elements 1, … p are sorted, then the next element, p+1 is inserted within these to 
the right place after some comparisons. 

 
 We take the first element: 34  is sorted 
 We take the second element:  8<34   this means that we are going to replace  

them 
 8 34     all the element remained are unchanged 
 . 
 . 
 . 
 We take the pth element: 
 8 34 64    compare the p-1th element  
       we leave 64 in place  
 8 34 64    are already sorted 
 We take the p+1th element  
 8 34 64 51   compare with the largest  
            >    we move 1 position further and compare 
              <   we swap the elements 
 
 8 34 51 64   we get a new element in the sequence sorted 
 8 34 51 64 32 21 
  
 
 
 8 21 32 34 51 64 
 
Code:  
 
FOR p = 2  TO N 
 j = p tmp=a(p) 
 WHILE tmp < a(j-1) 
   a(j) = a(j-1)   {swap} 
   j = j-1 
 ENDWHILE 
   a(j) = tmp 
ENDFOR 
 



Bubble Sorting 
 
 O ( N2) – Insertion Sort (we can see from the code) 
 Θ (N2) tight bound  
(number of comparisons, number of swaps) 
 when elements are „almost” sorted (many of them are already 

in the correct order) the Insertion Sort algorithm needs just a 
relatively small number of comparisons and swaps. Then it is 
effective. 

Shell Sort 
 
Idea: divide the sequence into groups 

1. induces great order into the initial random sequence relatively fast 
2. then apply insertion sort to get final order 

 
to compare element which are relatively great distance from each other 
1st step: half the seqiunece (4 elements/group), and compare corresponding elements (four groups, 
two elements/group) 
 
 
 
 
7 1 3 5 0 9 2 10 
 
 
 
Each groups contains 2 elements: 
 
7  1  3  5 
0  9  2  10  4 groups with two elements /group 
 
1st group 2nd group 3rd  4th 

 

Now apply insertion sort for each groups: 
 
 
0  1  2  5 
7  9  3  10 
 
 
0 1 2 5 7 9 3 10 our new sequence after the first step 
 
 
 
 
 
 
 
 



now apply the same idea again:  divide the first half into 2 subhalves  
     form again the groups 

 
0 1 
2 5      2 groups with 4 elements/group 
7 9 
3 10 

 
Apply now insertion sort for each groups. We get  
 
 0 1 

2 5 
 3 9      we are going to have 1 swap: 2 and 3 are 
7 10      swapt 
  

0 1 2 5 3 9 7 10 after the second step 
 
We apply the same again :  we divide the subhalves into subhalves until every subhalf contains 

just 1 element . So we get one group that contains every elements.  
We get: 
 
0 1 2 5 3 9 7 10   now apply insertion sort 
 
 

effective, because this is the „almost” 
sorted sequence 

 
        so insertion sort will be very fast 
 
Code: 
 
FOR ( gap = N/2; gap > 0; gap/=2 )  {N/2: the length of the half; gap is going to be halfed} 
 FOR ( i = gap; i < N; i++ ) 
  FOR ( j = i – gap; j >= 0 && a [ j ] > a [ j + gap ]; j - = gap )  
  { temp = a [j ]; 
   a[ j ] = a [ j + gap ]; 
   a [ j + gap ] = temp;  
   … } 
 
proved very fast in practice 
O ( NlogN ) < O ( N2 ) the complexity 
 
for certain values – better choice – of the gap Θ ( N1,5 ), O ( N1,25 ) 
 
the difficult problem is  evaluation of its complexity  
    not final 
  Θ( N ) < complexity < Θ ( N2 ) 
 
 
 



A better choice of the gap: 
 …, 1093, 364, 121, 40, 13, 4, 1  
a1, a2, …, an to be sorted 

find the largest first 
 
gap = 1 
REPEAT  
 gap = 3* gap +1 
UNTIL gap > n 

REPEAT  
 gap = gap DIV 3 
  DO  INSERTION SORT … 
   with 
 
UNTIL gap = 1 
END 
 
complexity: Θ ( N1,25 ) 
 

Merge Sort 
 
idea: „divide et impera” 
What does merging mean? 

given two sorted sequences, 
produce one sequence with the property: 

• contains every element of the two given sequences, and 
• sorted the same way (descendingly / ascendingly) 

Ex. working with files 
 
Ex. 
 
S1: 1  3  7  10  may have different lengthes 
 
S2: 5  6  8 

 
S:  1 3 5 6 7 8 10  we take the first elements  

simple, but very difficult to code 
in practice 

Code Merging 
 

• main memory S1, S2, S 
• files on the disk   
 
attention: when the end of a sequence is detected 
 
Merge Sort Ex. 
 
 34 56 78 12 45 3 99 23 

 



1. divide phase 
 

34 56 78 12 45 3 99 23 
 
2. we divide every half to subhalves 

divide 
34 56 78 12 45 3 99 23 
 
3. we divide every subhalf again to subhalves: 
 
34 56 78 12 45 3 99 23 
 
S1  S2 
 
Merge algorithm 
 
34 56 12 78 3 45 23 99 

 
we apply the same Merge alg. 
         conquer 
12 34 56 78 3 23 46 99 
 

 finally we apply Merge alg. again 
 
 3 12 23 34 45 56 78 99 
 

the final order 
 
Code 
 
Merge Sort 
 
 mid = (first + last ) 
 mergesort (first, mid ) 
 mergesort (mid + 1, last ) 
 merge 
 
Merge Sort: 

• recursive algorithm 
• complexity 

T ( N ) = 2 T ( N/2 ) + N 
telescoping 
T ( N ) = O ( NlogN ) 

 very tricky another algorithm 
 



HEAPSORT 
 
heap: an array represented  as a binary tree obeying the heap property  

 
 
every node X (in tree)  

the key value   Key (Parent(X)) ≥ Key (X) 
         ≥ 

Ex. for a heap: 
13 21 16 24 31 19 68 65 26 32  
represented as a binary tree: 
    13 
 

21 16   the heaps property is satisfied, because  
every node is less or equal to their  

24 31  19 68  children 
 
 65 26 32 
 
1. very interesting property of the heap from a programming point of view: 
 
every element i: 

       we need no pointers! 
left child  right child    we simply need +, * 

2i  2i+1 
 
this yields a fast algorithm 

 
2. property: A binary tree with height h has between 2h and 2h+1-1 nodes 
justification: for this property: 
 
h = 0 N = 1   just contains the root 
    1 = 20 = 2h 
 
h = 1 N = 3   (root + at least one child) 
    3 = 21 + 1 = 2h + 1 = 2h + (21 – 1) 
 
h = 2 N = 7   7 = 2h + 3 = 2h + (22-1) 
 
N ≤ number of the leaves + number of the nodes of the previous tree 
N ≤ 2h + 2h –1 ( = 2*2h = 2h+1 ) 
 
the max. number of nodes: 2h+1 – 1 
the min.number of nodes:  (if every level contains just 1 node) 2h  2h ≤ N ≤ 2h+1 – 1 
 
          h=  log N  = O (logN) 
 
 
 
 



Heapify:  
     heapify 
 Given an arbitrary array    make it a heap! 
 
 
    16 
 
   4  10 
 
  14 7  9 3  Does it satisfy the heap property? 
 
 2 8 
 
i = 1 • 1st level 
i = 2 •  
i = 3   heap property is not satisfied 
  we have to swap the element according to the property 
 
   16 

    ≤ 
4  10  • 
 

 
  4     14 
 
           14  7    4  7 
 
    . 
    . 
    . we continue analysing 
Heapify code: 
 
 Heapify (A, i) 
  MAX = max (A (i), Left (A (i)), Right (A (i))) 
   IF MAX ≠ A (i) swap (A(i), max (Left(A(i)), Right (A(i)))) 
  Heapify (A, MAX) 
  { recursively } 
 
the selection of max. (time) : Θ (1) 
the heapify : Θ (h) 
 
Θ (1) + Θ (h) = Θ (h) = O (h) = O (log N) 
 
Convert an array into a heap 
 
Build_Heap ( A ) 
 FOR i =   length ( A ) / 2   DOWNTO 1 DO Heapify ( A, i) 
 
O ( N ) * O ( logN ) = O ( NlogN) time 
 



HeapSort ( A ) 
 Build_Heap ( A )      { O (NlogN) } 
  FOR i = length (A) DOWNTO 2   { n-1 calls  constant } 
   DO swap ( A(1), A(i)) 
    Heapsize (A) = Heapsize (A) – 1 
    Heapify (A,1)    { O (logN ) } 
 
O ( N logN ) + ( N-1 )* O ( logN ) = O ( N logN ) 
 
after executing Build_Heap we have a heap: we will get the array in ascending order 
 
    16   16, 14, …    14 
 
   4  10      8  10 
 
  8 7  9 3    4  7   9  3 
 
 2 4       1       2  1  … 
 
 
Bubble Sort: O ( N2 ) 
Insertion Sort: O ( N2 ) 
Quick Sort: O ( NlogN ) 
Merge Sort: O ( NlogN ) 
Shell Sort:: O ( N1,5 ) 
Heap Sort: O ( N logN ) 

in average 
 
∀ S comparisons Ω ( NlogN ) lower bound 
∀ : internal sorting methods the elements to be sorted are all in the main memory. 
When sorting in real time on-line : different algorithm would be needed ( so sorting on disk diff. 
algorithm would be required, for example Merge can de used) 
 
 
Special cases: 
 
pre-defined requirements, some certain properties 
 
only then: sorting algorithm : LINEAR TIME 
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