
 1

TOWARDS A DIGITAL LIBRARY THEORY: A
FORMAL DIGITAL LIBRARY ONTOLOGY

 Marcos André Gonçalves, Layne T. Watson, and Edward A. Fox.
Virginia Polytechnic Institute and State University

Blacksburg VA 24060
{mgoncalv, ltw, fox}@vt.edu

Digital libraries have eluded definitional consensus and lack agreement on common models. This makes comparison of
DLs extremely hard, promotes ad-hoc development, and impedes interoperability. In this paper we propose a formal
ontology for digital libraries (DLs) that defines the fundamental concepts, relationships, and axiomatic rules that govern
the DL domain, therefore providing a frame of reference for the discussion of essential concepts of DL design and
construction. The ontology is an axiomatic, formal treatment of DLs, which distinguishes it from other approaches that
informally define a number of architectural variants. The process of construction of the ontology was guided by 5S, a
formal model for digital libraries. The resulting ontology can be used to classify, compare, and differentiate the features
of different DLs. To test its expressibility we have used the ontology to create a taxonomy of DL services and reason
about issues of minimality, extensibility, and composability.

1. INTRODUCTION
Research in Digital libraries (DLs) has historically been very pragmatic. While much attention has
been paid to design and implement systems and architectures [Witten03, Castelli03, Payette02,
Hussein02], create collections and services [NSDL04, CITIDEL04], and improve algorithms and
methods [Giles03], very little has been done to understand the underlying fundamental concepts,
their relationships, and the axiomatic rules that govern the DL domain, or in other words, to develop
a theory of DLs. The necessity of such theory has long being advocated, from the origins of the
field, illustrated by Licklider’s call for a unified Computer Science(CS)/Library and Information
Science(LIS) model [Licklider65], to recent workshops on the future of digital libraries [Larsen04].
The absence of such a theory makes comparison of different DLs architectures and systems
extremely hard, promotes ad-hoc development, and impedes interoperability. Its existence may
enhance our ability to communicate about and identify new research areas [Sompel03].

In [Gonçalves04], we have presented a partial formal conceptualization of digital libraries by
formally defining high-level DL concepts such as digital objects, collections, repositories, services,
etc. from basic mathematical concepts such as sets, graphs, functions, sequences, and so forth in a
bottom-up manner. However, such conceptualization is incomplete to define a DL theory. A theory
should make explicit the implicit relationships that exist among the defined formal DL concepts as
well as provide a set of rules or axioms that precisely define and constrain the semantics of concepts
and relationships in the theory. This type of formal conceptualization has elsewhere been called an
ontology [Doan03]. Ontologies specify relevant concepts – the types of things and their properties –

 2

and the semantic relationships that exist between those concepts in a particular domain. Formal
specifications use a language with a mathematically well-defined syntax and semantics to describe
such concepts, properties, and relationships precisely.

In this work, we define a formal, axiomatic ontology for digital libraries (DLs) that can serve as a
frame of reference for the discussion of essential concepts of DL design. The process of
construction of such an ontology was guided by 5S, a formal model for digital libraries. We use the
resulting ontology to provide answers for questions such as: 1) how should DL services be built
from the repository, its collections and metadata catalogs, and from the relationships among
different societies that participate in the DL?; 2) which are the dependencies and consistency rules
that should follow in a DL model?; 3) which are the fundamental and elementary DL services and
how can services be built/composed from other DL services?.

This paper is organized as follows. Section 2 summarizes our earlier results by giving a formal
definition of DLs based on the 5S model. Section 3 builds on the core definitions to create an
axiomatic, formal ontology for digital libraries. Sections 4 illustrates the expressiveness of the
ontology by applying it to create a taxonomy of DL services and to reason about issues of
minimality, extensibility, and composability. Section 5 includes a brief discussion of other practical
applications of the ontology. Section 6 concludes the paper with a glimpse of future work.

2. BACKGROUD: THE 5S MODEL FOR DIGITAL LIBRARIES
According to the 5S formal model a digital library is a 10-tuple (Streams, Structs, Sps, Scs, St2,
Coll, Cat, Rep, Serv, Soc) in which [Gonçalves04]:
a) Streams is a set of streams, which are sequences of arbitrary types (e.g., bits, characters, pixels,

frames);
b) Structs is a set of structures, which are tuples, (G, φ), where G= (V, E) is a directed graph and

φ: (V ∪ E) → L is a labeling function;
c) Sps is a set of spaces each of which can be a measurable, measure, probability, topological,

metric, or vector space.
d) Scs = {sc1, sc2, …, scd} is a set of scenarios where each sck = <e1k({p1k}), e2k({p2k}), …,

ed_kk({pd_kk})> is a sequence of events that also can have a number of parameters {pik}. Events
represent changes in computational states; parameters represent specific locations in a state and
respective values.

e) St2 is a set of functions Ψ: V× Streams→ (Ν × Ν) that associate nodes of a structure with a
pair of natural numbers (a, b) corresponding to a portion of a stream.

f) Coll = {C1, C2, …, Cf} is a set of DL collections where each DL collection Ck = {do1k, do2k, …,
dof_kk} is a set of digital objects. Each digital object dok = (hk, Stm1k, Stt2k, Ωk) is a tuple where
Stm1k ⊆ Streams, Stt2k ⊆ Structs, Ωk ⊆ St2, and hk is a handle which represents a unique
identifier for the object.

g) Cat = {DMC_1, DMC_2, …, DMC_f} is a set of metadata catalogs for Coll where each metadata
catalog DMC_k = {(h, msshk)}, and msshk = {mshk1, mshk2, …, mshkn_hk} is a set of descriptive
metadata specifications. Each descriptive metadata specification mshki is a structure with atomic
values (e.g., numbers, dates, strings) associated with nodes.

h) A repository Rep = {(Ci, DMC_i)} (i=1 to f) is a set of pairs (collection, metadata catalog); it is
assumed there exists operations to manipulate them (e.g., get, store, delete).

i) Serv = {Se1, Se2, …, Ses} is a set of services where each service Sek = {sc1k, .., scs_kk} is
described by a set of related scenarios.

 3

j) Soc = (C, R) where C is a set of communities and R is a set of relationships among
communities. SM = {sm1, sm2, …, smj}, and Ac = {ac1, ac2, …, acr } are two such
communities where the former is a set of service managers responsible for running DL services
and the latter is a set of actors that use those services. Being basically an electronic entity, a
member smk of SM distinguishes itself from actors by defining or implementing a set of
operations {op1k, op2k, …, opnk} ⊂ smk. Each operation opik of smk is characterized by a triple
(nik, sigik, impik), where nik is the operation’s name, sigik is the operation’s signature (which
includes the operation’s input parameters and output), and impik is the operation’s
implementation. These operations define the capabilities of a service manager smk. For
example, SearchManager ⊃ {match(q:query, C:collection)1} indicates that a SearchManager
defines an operation “match” with two parameters, a query and a collection.

The above definition emphasizes syntactic aspects, i.e., how digital library concepts are composed
or built from previously defined concepts. In the next section, we will explore semantic relations
and rules of the DL domain.

3. DEFINING A DL THEORY THROUGH AN ONTOLOGICAL ANALYSIS
OF THE 5S MODEL
The crux of our contribution with the 5S model was, departing from abstractions of many DL
architectural settings, recognizing and formally defining the essential participating concepts in the
digital library discourse. In this section, we extend those results to define a DL ontology by
specifying the fundamental collaborations or relations that exist among the DL participants and the
sets of rules (or axioms) which constrain the semantics of concepts and relations in the ontology.

We organize the presentation and development of the ontology according to the 5S model. For each
‘S’, we list the concepts and the relations in which they take part. We consider first intra-model
relations, i.e., the relations that occur only among concepts of the same ‘S’ model, along with the
corresponding axioms or rules. Afterwards, relations defined between concepts belonging to
different Ss are defined representing inter-dependencies. It should be noticed in the discussion
below that some concepts such as digital objects and indexes are inherently “cross-S” concepts, i.e.,
they are defined in terms of concepts belonging to more than one ‘S’. For presentation purposes,
we will include those “cross-S” concepts within the discussion about the ‘S’ in which they share
most of their relationships.

More formally, a domain is a set of objects of the same DL type. A DL type is characterized by a
definition as in [Gonçalves04]. An object is of a type X if its properties (e.g., internal components,
organization) satisfy the definition of X. Examples of DL types include the basic Ss and derivative
types such as collections, digital objects, etc. An ontological concept is a domain. For example, the
statement x ∈ Digital Object says that x is a digital object as defined in [Gonçalves04] and
therefore describes x by the ontological concept Digital Object. An n-ary relation is a subset of the
Cartesian product C1 × C2 … × Cn of the domains defined by the respective DL concepts. Let R ⊂
A × B be a relation. Then R-1 = {(b, a)| (a, b) ∈R} ⊂ B × A is called the inverse relation of R. A
predicate is a function from a Cartesian product to the Boolean values true or false. A predicate

1 To simplify notation, we will represent a operation opx = (nx, sigx, impx) by nx({pxk}) where {pxk} is the set
of input parameters of opx. The output parameters and implementation can be added when a more full
description of the operation is required.

 4

p(x) built over a relation among concepts is true if x is a member of the relation, false otherwise.
We now proceed to define our meaning of a DL ontology.

Def: An ontology is a tuple Ω = (Ontol_Concepts, Ontol_Rels) where:

1. Ontol_Concepts is a family of ontological concepts,
2. Ontol_Rels is a family of relations.

Relations in Ontol_Rels may be operationally realized by one or more rules (e.g., first-order logic
axioms) which intentionally specify or constrain which elements of a concept can participate in a
relation. Ontol_Rules is a family of rules of a particular ontology.

For notational purposes we will use bold to designate ontological concepts (or simply, concepts)
and italics to define the corresponding predicate. We will use the dot “.” notation to denote
components of the definition of concepts, for example “x.h” specifies the handle of a digital object,
y.Img specifies the image (or range) of events of scenario y, and z.op specifies the set of operations
of Service Manager z. We also may refer to a component of a tuple-oriented concept by its position
in the tuple, for example, z(2) specifies the set of descriptive metadata specifications of a member
of a catalog. Finally, we will represent a relation R ⊂ A × B by A R B. The notation for 3-tuple
relations will use similar variants, depending on the semantics of the relation.

Below we proceed to define the relations and rules of our DL ontology. The relations were defined
by carefully analyzing all possible pairs of associations among concepts within the same and
between Ss, and contextual information necessary to define some of these relations.

3.1 Intra-Model relationships
Streams
• Concepts: {text, image, video, audio}
• Relations:

o contains ⊂ video × image ∪ video× audio
Streams define the basic content types over which digital objects are built, the latter being
the ultimate carriers of the information in the DL. However some complex types of streams
(e.g., video) may themselves be associated with simpler types of streams (e.g., images,
audio). This relation indicates that a video contains a image as one of its frames, or contains
a specific audio recording.

Structures
• Concepts: {do, ms, C, DMC, Rep}. Key: do = digital object; ms = descriptive metadata

specification; mss = set of descriptive metadata specifications; C = collection, DMC = metadata
catalog for collection C, Rep = repository.

• Relations:
o is_version_of ⊂ do × do

Different manifestations of a digital object are versions, which normally differ structurally
or in terms of their content (e.g., format, encoding, etc.). This relation indicates that a
digital object is a version of another digital object. Conceptually a digital object x is a
slightly different version of digital object y in terms of their streams or structures. Note also
that since handles are used as identifiers of digital objects they should be globally unique,
so no two digital objects, version or not, share the same handle.

 5

Rules. 1. Digital object handles are unique. 2. x is_version_of y for two digital objects x
and y if they differ in the handle component and at least one other component, but share at
least one other of their components (e.g., they have the same set of streams, set of
structures, or set of structured_streams).
Symbolic rules. 1. ∀x, y (do(x) ∧ do(y) ∧ (x.hx = y.hy) � x = y));
2. ∀x,y (x is_version y ⇔ do(x) ∧ do(y) ∧ (x.h ≠ y.h) ∧ ((x.Stt ≠ y.Stt) ∨ (x.Stm ≠ y.Stm) ∨
(x.Ω ≠ y. Ω)) ∧ ((x.Stt = y.Stt) ∨ (x.Stm = y.Stm) ∨ (x.Ω = y. Ω))).

o belongs_to ⊂ ms × DMC ∪ mss × DMC
Digital objects can belong to many different collections. Similarly, descriptive metadata
specifications can belong to many catalogs. This relation makes the latter relationship
explicit.
Rule. x belongs_to y indicates that a metadata specification x is used to define an element of
the metadata catalog y.
Symbolic Rule. ∀x, y (x belongs_to y ⇔ (ms(x) ∧ DMC(y) ∧ (∃z ∈ y: x ∈ z(2))) ∨ (mss(x) ∧
DMC (y) ∧ (∃z ∈ y: x = z(2)))

o part_of ⊂ C × C ∪ DMC × DMC
Many DL collections and metadata catalogs are built by aggregating smaller
subcollections/subcatalogs. One good example is the National Science Digital Library
(NSDL) union catalog which is basically an amalgamation of the metadata catalogs of all
the participant projects.
Rule. x part_of y indicates that collection x is a subset of collection y or metadata catalog x
is a subset of metadata catalog y.
Symbolic Rule. ∀x, y (x part_of y ⇔ ((C(x) ∧ C (y) ∧ x ⊆ y) ∨ (DMC(x) ∧ DMC (y) ∧ x ⊆
y)))

o describes ⊂ mss × do ∪ DMC × C;
A digital object may potentially have many descriptive metadata specifications, for
example, in standard formats (e.g., Dublin Core, MARC) for sharing purposes, or based on
more detailed, community-oriented specific formats. Also qualitative properties of metadata
catalogs such as completeness and consistency can be defined in terms of this relationship.
Rules. 1. x describes y indicates that a set of descriptive metadata specifications x,
belonging to some catalog q for collection p, describes the content of a digital object y,
which belongs to that collection p. The set of metadata specifications x can describe only
one digital object, therefore the describes relation between sets of metadata specifications
and digital objects is a function.
Symbolic rules. 1.1. ∀x, y (x describes y ∧ mss(x) ∧ do(y) � ∃ p, q, h: C(p) ∧ DMC(q) ∧
((h, x) ∈ q) ∧ (y ∈ p) ∧ (y(1) = h)); 1.2. ∀x, y, z (x describes y ∧ x describes z ∧ mss(x) ∧
do(y) ∧ do(z) � y = z).
Rules. 2. The relation q describes p, (q, p) ∈ DMC × C indicates that a metadata catalog q
describes a specific collection p. A complete catalog has at least one set of metadata
specifications for each digital object in the collection it describes. In a consistent catalog,
each set of metadata specifications describes (exactly) one digital object in the related
collection. In other words, a complete describes relationship between a metadata catalog,
and a collection defines a surjective partial function, and a consistent relationship defines a
total function. Also note that it is very common that different metadata specifications (e.g.,
a Dublin Core and a MARC version) may describe the same digital object, so in most cases
the describes function is not injective.
Symbolic Rules. 2.1 Catalog/Collection Consistency: ∀x, y, z (C(y) ∧ DMc(x) ∧ mss(z) ∧
x describes y ∧ z belongs_to x � ∃ p ∈ y: z describes p);

 6

2.2. Catalog/Collection Completeness: ∀x, y, z (C(y) ∧ DMc(x) ∧ do(z) ∧ x describes y ∧
z ∈ y � ∃ m: (mss(m) ∧ m belongs_to x ∧ m describes z))

o stores ⊂ Rep × C × DMc
Captures the fact that a pair (collection, metadata catalog) resides in a physical repository.
Rule. r stores (x,y) indicates that a repository r stores a pair with a collection x and the
metadata catalog y which describes x.

 Symbolic Rule. ∀x, y, z (x stores (y,z) � Rep(x) ∧ C(y) ∧ DMC(z) ∧ z describes y)

Spaces
• Concepts: {Vec, Pr, Measurable, Measure, Metric, Top}. Key: Vec= vector space; Pr =

probability space; Measurable = measurable space; Measure = measure space; Metric = metric
space; Top = topological space.

• Relations
o is_a ⊂ Measure × Measurable ∪ Pr × Measure ∪ Metric × Top ∪ Vec × Top.

x is_a y indicates that a space x has all the properties/constraints/operations associated with
the definition of the space y and may include additional properties / constraints / operations.
The is_a relationship is reflexive, transitive, and anti-symmetric, therefore mathematical
spaces that participate in this relation define a partial order.

 Scenarios
• Concepts: {Se, Sc, e}; Key: Se = service; Sc = scenario; e = event.
• Relations:

o contains ⊂ Sc × e
Make explicit the relationship that an event belongs to a sequence of some scenario of use
of a DL service.
Rule. sck contains ek_j indicates that an event ek_j = sck(j) is a element of the image/range of
a scenario sck, for some j belonging to the domain {1,2, …, dk} of sck. Recall that scenario
is a sequence of events, i.e., it is a function from natural numbers to a set of events.
Symbolic Rule. ∀ x, y (x contains y ∧ Sc(x) ∧ e(y) � ∃j: (j ∈x.Dom ∧ y = x(j)))
o precedes ⊂ e × e × Sc; happens_before ⊂ e × e × Sc
A scenario of use represents a temporal sequence of events that a user (or another service
manager) engages in while interacting with a DL service. The temporal ordering of events
is captured by these relations.
Rule 1. x precedesz y indicates that an event x occurs immediately before y in the context of
scenario z. x happens_beforez y indicates that both x and y are elements of sequence z, and x
happens some time before y, i.e., the sequence value of x is smaller than the sequence value
of y.
Symbolic Rule 1. ∀ x, y, z (x precedesz y ∧ e(x) ∧ e(y) ∧ Sc(z) � ∃ i, j: (z contains x ∧ z
contains y ∧ x = z(i) ∧ y=z(j) ∧ i + 1 = j))
Symbolic Rule 2. ∀ x, y, z (x happens_beforez y ∧ e(x) ∧ e(y) ∧ Sc(z) � ∃ i, j: (z contains x
∧ z contains y ∧ x = z(i) ∧ y=z(j) ∧ i < j))
o includes ⊂ Se × Se ∪ Sc × Sc; extends ⊂ Se × Se ∪ Sc × Sc
Services exposed by a DL can be classified either as elementary or composite. Elementary
services provide the basic infrastructure for the DL. Examples include collecting, indexing,
rating, and linking. Composite services can be composed of other services (elementary or
composed) by reusing or extending them. For example, searching and browsing services
use indexing and linking services, a relevance feedback service extends the capabilities of a
basic searching service, and a lesson plan building service may use already existing
searching, browsing, and binding services to find and organize relevant resources. The

 7

problem of composability of services has gained considerable attention recently, mainly in
the Web Services community [Benatallah03, Curbera02]. However, DL services are
restricted to certain specific types with constrained inputs and outputs, therefore making the
problem more manageable and amenable to domain specific techniques. Since DL services
are described by correlated, generally slightly variant scenarios of use, similar notions can
be applied to those scenarios. For example, consider scenario sc1= <search(q,C),
results({(doi,wi)})> for a search service where q represents a query, C a DL collection, do a
digital object, and w a weight. The scenario sc2 = <search(q,C), results({(doi,wi)}),
relevant_docs{doj}, expanded_query(eq,{doj}), search(eq,C), results{(dok,wk)}> is an
extension of sc1 representing a relevance feedback search.
Rule 1. Let sc1= <e1,e2,…,en> be a scenario. A scenario sc2 = <e2x,…,e2y> includes scenario
sc1 if it contains all events of sc1 in the same order they appear, i.e., if event ei precedes
event ej in sc1, the same relationship holds in scenario sc2, or, in other words, sc2 includes
sc1 only if sc1 is a consecutive subsequence of sc2.
Symbolic Rule 1. ∀x, y (x includes y ∧ Sc(x) ∧ Sc(y) � (∀z: e(z) ∧ y contains z � x
contains z) ∧ (∀p, q: e(p) ∧ e(q) ∧ p precedesy q � p precedesx q))
Rule 2. A service Se1 includes service Se2 if it includes all its scenarios, i.e., if Se2 ⊆ Se1.
Symbolic Rule 2. ∀x, y (x includes y ∧ Se(x) ∧ Se(y) � y ⊆ x).
Rule 3. Let sc1= <e1,e2,…en> be a scenario. A scenario sc2 = <e2x,…,e2y> extends scenario
sc1 if it contains all events of sc1 in the same relative order they appear, i.e., if event ei
happens before event ej in sc1, the same relationship holds in scenario sc2, or, in other
words, sc2 extends sc1 only if sc1 is a subsequence of sc2.
Symbolic Rule 3. ∀x, y (x extends y ∧ Sc(x) ∧ Sc(y) � (∀z: e(z) ∧ y contains z � x
contains z) ∧ (∀p, q: e(p) ∧ e(q) ∧ p happens_beforey q � p happens_beforex q))
Rule 4. A service Se2 extends service Se1 if Se2 includes all of Se1’s scenarios, and Se2 has
new scenarios, i.e., there exist scenarios in Se2 which are not elements of Se1, or there exist
scenarios of Se2 which extend scenarios of Se1.
Symbolic Rule 4. ∀x, y (x extends y ∧ Se(x) ∧ Se(y) � y ⊆ x ∧ (x≠ y ∨ ∃p, q: Sc(p) ∧
Sc(q) ∧ p ∈ x ∧ q ∈ y ∧ p extends q))

Societies
• Concepts: {SM, Ac, op}; Key: SM = service Manager; Ac = actor; op = operation.
• Relations

o redefines ⊂ op × op
A common reason to redefine or override an operation is to provide more specific
functionality for a service manager which inherits an operation from another service
manager (see below).
Rule. A redefined operation has the same name, and often (but not necessarily) the same
signature, but a different implementation.
Symbolic Rule. ∀x, y (x redefines y ∧ op(x) ∧ op(y) ⇔ x.n = y.n ∧ x.imp ≠ y. imp)

o includes ⊂ SM × SM; inherits_from ⊂ SM × SM
Aggregation and generalization are two special types of relationships between service
managers that foster reusability and extensibility. Aggregation, captured in the includes
relation, models a “whole/part” relationship in which one manager as a whole has other
managers as parts, or, in other words, if service manager x includes service manager y, it
implies that y is required in order to use service manager x. Generalization, captured by the
inherits_from relation, means that a manager has all the capabilities defined by another
manager, potentially has additional ones, and can redefine others (polymorphism). For

 8

example, LessonPlanBuilding includes Binding Manager indicates that a service manager
LessonPlanBuilding includes operations of a Binding Manager. Similarly,
RelevanceFeedbackSearch Manager inherits_from Search Manager indicates that a
RelevanceFeedbackSearch Manager has the same capabilities as the Search Manager as
well as additional ones (e.g., for query expansion).
Rule 1. x includes y indicates that a service manager x has all operations defined in service
manager y plus others not defined in y.
Symbolic Rule 1 . ∀x, y (x includes y ∧ SM(x) ∧ SM(y) � y.op ⊆ x.op ∧ y.op ≠ x.op)
Rule 2. x inherits_from y indicates that a service manager x has all operations from the
service manager y and defines additional operations, or x redefines some operations of y.
Symbolic Rule 2. ∀x, y (x inherits_from y ∧ SM(x) ∧ SM(y) � (y.op ⊆ x.op ∧ y.op ≠
x.op) ∨ (∀z ∈ y.op - x.op: ∃w ∈ x.op: w redefines z))
o invokes: op × op
It is generally useful to specify dependencies between operations when discussing issues of
extensibility and reusability. For example, search_similar(do) invokes match(q:query,
C:collection) indicates that a search_similar operation invokes a match operation, defined in
a Service Manager x or in another manager that x inherits from or includes.
Rule. 1. f invokes g indicates that operation f may invoke operation g, namely, that within
the body of operation f there is an expression whose evaluation invokes g (g is a
subfunction of f). The operation f defined in a service manager x may only invoke an
operation g, if g also is defined in x or in another manager that x includes or inherits from.
Symbolic Rule. 1. ∀f, g (f invokes g ∧ op(f) ∧ op(g) ∧ (∃p: SM(p) ∧ f ∈ p ∧ g ∈ p) ⇔ g is a
subfunction of f ⇔ ∃ functions r, s: g = r ° f ° s

o association: Ac × Label × Ac
A generic relationship between actors without a pre-defined semantics, this one captures
generic societal relationships between communities of actors. For example, the relation
(Professor, “teaches”, Learner) is self-explanatory.

3.2 Inter-Model Relations
In this section, we identify several relations that cross the borders of Ss. Our emphasis here is on the
relationships between the dynamic aspects of the DL, characterized by societies and scenarios, and
the more “static” aspects of the DL, characterized by concepts in the other Ss. We also further
explore other relationships among the three static Ss.

Scenarios and Societies
• Relations:

o executes ⊂ e × <op>
The changes of computational states which are triggered by events in a scenario are
computationally realized by invoking operations defined on service managers. Let <op> be
the set of finite sequences from op. ek executes <op>j indicates that the list of operations
<op>j = <op1j, op2j, …, opn_jj> is executed as the result of the occurrence of event ek. Also if
Pk is the set of event parameters of ek and Pj is the union of all parameters of all operations
in <opj>, Pj ⊆ Pk. For example, search(q,C) executes match(q,C) states that an event search
executes an operation match (probably defined in a Searching Manager) between a query q
and the set of digital objects in the collection C.
o recipient ⊂ {SM ∪ Ac} × e
 In a scenario it is normally useful to identify the societal members that receive events for
the purpose of checking consistency, security, etc. For example, the following two

 9

relationships specify recipients of events in a simple searching scenario: Search Manager
recipient search(q,C); Researcher recipient results({(doi,wi)}).
Rule. recipient ⊂ {SM ∪ Ac} × e indicates that a specific service manager or actor is the
receiver of an event in a scenario. Any actor can be the receiver of any event. If the event
has an execute relationship with some operation, the receiver must be a Service manager
which should have this operation.
Symbolic Rules. ∀x, y, z (x recipient y ∧ y executes z ∧ SM (x) ∧ e(y) � ∀w ∈ z.Img: w
∈ x.op).
o participates_in ⊂ {SM ∪ Ac} × Sc
This relation makes explicit the societal entities interacting in a scenario.
Rule. Indicates that a service manager or actor x participates in a specific scenario y of a DL
service by being a recipient of an event z of scenario y.
Symbolic Rule. ∀ x, y (x participates_in y ∧ (SM(x) ∨ Ac(x)) ∧ Sc(y) � ∃z: e(z) ∧ y
contains z ∧ x recipient z))
For Service Managers, a consequence of the defined relations is that only operations
defined in the participating managers should be associated with events of the scenarios in
the service. This gives rise to the following consistency rule between a scenario and a
society model.
Scenarios-Society Consistency Rule. A scenario x is consistent with regards to a set of
service managers Y if each operation executed by each event in the scenario is defined in
some service manager y ∈ Y.
Symbolic Rule. ∀x, y, z, w (Sc(x) ∧ e(y) ∧ op(z) ∧ x contains y ∧ y executes w ∧ z ∈ w.Img
� ∃p: SM(p) ∧ p partipates_in x ∧ z ∈ p.op).
o uses ⊂ Ac × Se
In many real DL settings it is useful to specify that only specific kinds of Actors may be
allowed to use certain services. For example, while a researcher should be allowed to use all
information seeking services, services such as “lesson plan building” and “dissertation
submission approval” should be used only by teachers and archivists, respectively.
Rule. Indicates that an Actor is allowed to use a specific service by participating in some of
the services’ scenarios.
Rule. ∀ x, y (x uses y ∧ Se(y) ∧ Ac(x) � ∃z: Sc(z) ∧ SM(w) ∧ z ∈ y ∧ x participates_in
z)
o runs ⊂ SM × Se
Rule. Service Manager x runs service y if all operations executed in all scenarios of y are
defined on x or in managers that x includes or inherits from.
Symbolic Rule. ∀x, y (x runs y ∧ SM(x) ∧ Se(y) � ∀ z, p, q, r: (Sc(z) ∧ e(p) ∧ op(r) ∧ z ∈
y ∧ z contains p ∧ p executes q ∧ r ∈ q.Img � r ∈ x.op)

Structures, Streams and Spaces
• Relations:

o IC ⊂ H × θ × {Vec ∪ Pr ∪ Metric}
Let C ∈ Coll be a collection, H be the set of all handles of digital objects in C, θ ⊂ ∪do(4),
do ∈ C, be a set of all triples (node, stream, interval) associated to digital objects in the
collection, where interval is a pair of natural numbers (a,b) corresponding to a portion of the
stream (or a substream). An index IC is a function that maps specific substreams associated
with nodes of specific digital object structures to elements of a vector, probability, or
metric space. Normally, the elements of these spaces are built by extracting features (e.g.,
text terms, histograms) from the respective substream. In the case of a probability space, the

 10

elements of H × θ are mapped to a finite set with a discrete measure assigning positive
probabilities to elements of that set.
Symbolic Rule. ∀x (x ∈ IC_i � ∃y, z: do(y) ∈ Ci ∧ x(1)=y(1) ∧ z = x(2) ∧ z ∈ y(4)).
∀C (Coll(C) ∧ (h, s ,v) ∈ IC ∧ (h, s ,v’) ∈ IC � v = v’).

Scenarios and (Streams, Structures, Spaces)
• Relations:

o employs ⊂ Se × S3; produces : Se × S3
Let S3 = Streams ∪ Strutures ∪ Spaces be the union of all concepts of the respective Ss. DL
services manipulate, transform, and return instances of the concept types defined in S3. For
example, the notion of distance (as defined by a metric space) or probability (as defined by a
probability space) are essential to services which need to compute a similarity measure between
objects in the DL or between a patron’s intrinsically vague information need and objects in the DL.
Examples of services that normally employ spaces to compute these measures include searching,
filtering, recommending, visualizing, classifying, and clustering. Also, services exist that transform
DL objects (digital objects, metadata specifications, structures, streams) into different types of
spaces for many purposes. Examples include services such as indexing, which transforms structured
streams into elements of a vector or probability space, rendering or visualizing, which normally
takes collections and transforms into a 2D/3D-metric space, or customizing, that normally
transforms a space (e.g., a user interface (UI) or a distance function) into another personalized space
(e.g., a customized UI or a personalized distance function [Fan]).

Figure 1. DL Ontology
Due to the complexity and number of possible instances of this relation, we will postpone the
discussion to the next section, where we will further characterize the relationships between services
and the other “static” Ss by making explicit employed inputs and produced outputs of events in
these services.

Streams

text

audio

image

video do mss

R

C DMc

describes

stores

is_version_of

Ic

Se

Sc

e

extends
reuses

SM

Ac

op
executes

participates_in

recipient

runs

Scenarios

Societies

inherits_from/includes

association

uses

Top

Pr Metric

Measurable

Measure

describes

employs
produces

employs
produces

employs
produces

Structures

Spaces

Vec

belongs_to

contains

∈

∈

⊂

ms∈

is_a is_a

precedes
happens_before

is_a

redefines
invokes

 11

The resulting ontology is graphically depicted as shown in Figure 1. Each S model is represented as
a circle containing the respective concepts. Normal lines represent inter-model relations while
dotted lines correspond to inter-model relationships. Arrows linked to a whole indicate that the
relationship can exist among all concepts in a S.

4. A TAXONOMY OF DL SERVICES
Our objective in this section is to further explore some of the most important types of relations in
the DL ontology, namely the “employs” and “produces” between Services and the other static “Ss”
and the “extends” and “includes” relations among services. More specifically, in this section we
want to answer questions such as: 1) Which DL elements are employed or produced by the different
DL services? 2) Which are the fundamental DL services? 2) Which kinds of service composition are
possible or valid? 3) Which DL services are elementary or composite? These relationships can give
insights into how DL services can be built from other DL components such as repositories and
societal interactions, as well as be composed with other services by extension or reuse.

Table 1 shows a set of activities or services derived from an expanded list in a DL taxonomy
presented in [Gonçalves04]. In the table each service is characterized by parameters (input, output)
of the initial and final events of the scenarios that compose those services. All other previous
definitions and keys apply here. Those definitions are complemented with the following ones.
Def. 1. A field fi is a label associated with a node of a structural or descriptive metadata
specification.
Def. 2. A query q is the representation of user interest or information need. The exact format of a
query is left unspecified here since it is system-dependent.
Def. 3. An annotation annik is a descriptive metadata specification that exists only in reference to a
digital object doi.
Def. 4. Hyptxt is an hypertext (see formal definition in [Gonçalves04]); anchor is a node of a
hypertext.
Def. 5. A personal binder biu_i is a subset of some collection Ck ∈ Coll for an actor u of Soc(1).
Def. 6. A log_entry is a descriptive metadata specification about an event of a scenario.
Def. 7. tfr ⊂ S3 × Spaces is a function that transforms any element of a concept in S3 into a space.
Transformers = {tfr1, tfr2, …, tfrn} is a set of such functions.
Def. 8. Let {doi} = {doi1, doi2,…, doin } be a set of digital objects and Ct = {c1, c2,…,cm} be a set of
labels for categories. A classifier classCt: {doi} → 2Ct is a function that maps a digital object to a set
of categories.
Def. 9. A cluster cluk = {do1k, do2k, …, donk} is a subset of a set of digital objects.

Table 2 shows an organized taxonomy of DL services featured in Table 1, derived from a deep
analysis of the entries in that table. The key aspects of defining such a taxonomy were: 1) to
separate services dealing with basic concepts such as collections and catalogs from those dealing
with higher level societal requirements; and 2) to define the responsibilities and interrelationships
among those services and how they collaborate. In this taxonomy, we define a fundamental service
(denoted by bold) as either: 1) one that helps to create elements of basic concepts belonging to our
minimal definition of a DL, such as digital objects, metadata specifications, collections, and
catalogs; 2) one that belongs to the minimal set of DL services (e.g., Searching and Browsing)
proposed in [Gonçalves]; or 3) one that supports the former services in terms of extension or reuse.
Similarly a composite (denoted by underlining) DL service is one that takes input from some other
service; otherwise the service is called elementary.

 12

Table 1. DL services, and their inputs, outputs

Table 2. A taxonomy of DL services/activities.
Infrastructure Services
Repository-Building
Creational Preservational

Add_
Value

Information
Satisfaction
Services

2 The definition of a browsing service in [Gonçalves04] includes a number of different outputs for browsing events over a
hypertext, including internal structures of digital objects and their structured streams. For the sake of simplicity in this
discussion we only will consider browsing services whose events’ output include only a collection of digital objects.

Service User input Other Service Input Output
Acquiring {doi} Ci Cj
Annotating doi, anni_k (hi, {anni_m}) (hi, {anni_(m+k)})
Binding {doi}, bu_k {doj} bu_(k+i)
Browsing Anchor Hyptxt {doi} 2
Cataloging doi, msi_k (hi, mssi_m) (hi, mssi_(m+k))
Classifying {doi} classCt, Ct {(doi, {ck_i})}
Clustering {doi} none {cluk_i}
Conserving Ci none Ck
Copying/Replicating Ci none Ck
Crawling (focused) Ci none Ck
Customizing
(interface)

aci , trfk spj spj_k

Digitizing None none doi
Disseminating {hx, …, hy} none {dox,...,doy}
Evaluating {doi} none {(doi, wi)}
Expanding (query) {doi} IC_i, qi qj
Extracting (structure) stmi none Ψik
Filtering q, {doi}

{doi}, ck
IC_i

classCt, Ct
{dok}
{dok}

Harvesting (metadata) {hi} none {(hi, mssi_m)}
Indexing Ci none IC_i
Linking Ci none Hyptxtik
Logging none ei({pi}) log_entryj
Measuring Ci spj {(doi, wi)}
Rating doi ,acj none {(doi,acj,rk)}
Recommending aci, Ck {(doi,aci,ri)}

{(doi, wi)}
{doj}

Requesting hi none doi
Reviewing (peer) {doi} none {(doi, wi)}
Searching q, Ci IC_i {dok}
Submitting dok,Ci

doi, msik, DMC_j
opk, smi

none
none
none

Cj
DMCt
smj

Surveying {doi} none none
Training (classifier) {(doi, {ck}i)} none classCt
Translating (format) doi none doj

Translating (language) doi none doj

Visualizing {doi} tfrk spik

 13

Acquiring
Authoring
Cataloging
Crawling (focused)
Describing
Digitizing
Harvesting
Purchasing
Submitting

Conserving
Converting
Copying/Replicating
Emulating
Renewing
Translating (format)

Annotating
Classifying
Clustering
Customizing
Evaluating
Extracting
Indexing
Linking
Logging
Measuring
Rating
Reviewing (peer)
Surveying
Training (classifier)
Translating (language/format)

Binding
Browsing
Disseminating
Expanding (query)
Filtering
Recommending
Requesting
Searching
Visualizing

Another important aspect of the taxonomy which helps to establish connections between these two
types of services in terms of reuse or extension relations is the realization that the output of
infrastructure services is normally the input of some of the information satisfaction services. Many
examples are illustrated in Figure 3 which focuses on fundamental services. Acquiring, authoring,
cataloguing, describing, and submitting are fundamental infrastructure services which build catalogs
and collections. An indexing service takes a collection and a catalog and produces an index used by
both searching and browsing services. Linking services work together with indexes to produce a
hypertext used for a browsing service to allow criteria-based, ordered, and hierarchical navigation
of possibly large collections.

Figure 3. Instantiations of the “Services Definition” model showing inputs and outputs of several examples of

infrastructure and information satisfaction DL services.

Figure 4 depicts reuse relations between fundamental and composite information services and
between the latter and some non-fundamental, add-value services. Common to the composite

Searching Browsing

Ic

Acquiring
User interests/needs

query anchor

Universal
Collection

Ci

DMCi

Indexing

Society

actor

Describing
Cataloguing

Linking

Hypertext

Infra-structure Services
(fundamental)

Information Satisfaction Services
(fundamental)

criteria sortOrder

{doi}

Submitting

Authoring

dok

mskj

 14

information satisfaction services depicted in the figure is the fact that all of them take a set of digital
objects or a collection as input. Recommending takes a user representation (e.g., a expression of
interest), and either the output of a Rating or Reviewing service, and produces a subset of the
original set of digital objects. Filtering takes a user profile, or a classifier produced by a Training
service, and also outputs a subset of a set of digital objects. Similarly, binding takes the output
produced by searching or browsing services and returns a subset of it. Visualizing produces a space
out of a digital object set/collection while Expanding a query takes the original query submitted to a
Searching service and a subset of the response set (i.e., relevant and/or non-relevant documents)
and returns a modified query.

Figure 4. Examples of Compositions of Services.

Many other possible compositions are possible by analyzing the entries in Table 1. Since services
such as Recommending, Filtering, Binding, Expanding query, etc., produce a set of digital objects,
these sets can be further indexed for searching/browsing purposes. A Relevance Feedback service
extends a Searching service and reuses a Expanding query service. An Ontology-Based navigation
service may reuse Linking and Classification services while a lesson plan building service may
reuse searching, browsing, binding, and describing services. An advanced searching service may
reuse an Extracting structure and extend a Searching service to provide support for fielded queries.

5. Practical Applications: Brief Discussion
Space prevents us of elaborating further on the practical implications and use of the proposed
ontology. Therefore we only briefly mention some previous applications and ongoing work with the
ontology. Previous work include: 1) reengineering a digital library specification language
[Gonçalves02, Rohit03]; and 2) developing an XML-based log standard for digital libraries
[Gonçalves02b]. Ongoing work include: 1) developing a model of quality in digital libraries; and 2)
contrasting disparate DL architectures by comparing what results from expressing them according
to the formal ontology model.

SearchingBrowsing

queryanchor

Society

actor

criteria sortOrder

Ck, {doi}

Recommending Filtering Binding Visualizing Expanding query

user model/expr Classifier/expr {doj}

{doR} {doF}

⊇

bi

Information
Satisfaction
Services

spV query’

fundamental

Rating/
Reviewing
(peer)

Training

Infrastructure

Services (Add_Value)

composite

 15

6. Conclusions and Future Work
We have presented a digital library formal ontology which complements the syntactical definitions
of DLs with semantic relationships and governing axiomatic rules, therefore producing a core
theory for the field of digital libraries. A taxonomy of digital library services based on the ontology
was presented and used to reason about issues of extensibility/reusability in DLs. Current and future
work, besides that described in section 5, include: 1) expanding the services taxonomy to include
pre- and post-conditions for service composition; and 2) creating and proving lemmas and theorems
about the DL concepts and relationships defined in the ontology.
REFERENCES
[Benatallah03] B. Benatallah, M.Dumas, Quan Z. Sheng , The SELF-SERV Environment for Web Services
Composition'', IEEE Internet Computing , IEEE Society, Jan/Feb issue, pp. 40-48, 2003.

[Castelli03] D. Castelli, P. Pagano: A System for Building Expandable Digital Libraries. Proc. of JCDL’03.
Houston, Texas, 2004, pp. 335-345.

[Curbera02] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana: Unraveling the Web
Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing 6(2): 86-93 (2002)

[CITIDEL04] The Computing and Information Technology Interactive Digital Educational Library.
http://www.citidel.org. (as of May, 2004)

[Doan03] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, A. Y. Halevy: Learning to match ontologies
on the Semantic Web. VLDB J. 12(4): 303-319 (2003)

[Gonçalves02] M. A. Gonçalves and E. A. Fox. 5SL - A Language for Declarative Specification and
Generation of Digital Libraries. Proc. of JCDL’02, pages 263-272, July 2002. Portland, Oregon, USA.

[Gonçalves02c] M. A. Gonçalves, M. Luo, R. Shen, M. F. Ali, E. A. Fox: An XML Log Standard and Tool
for Digital Library Logging Analysis, Proc. of ECDL’02, pp. 129-143, Rome, Italy, Sept. 16-18, 2002

[Gonçalves04] M. A. Gonçalves, L. T. Watson, N. Kipp, E. A. Fox. Streams, Structures, Spaces, Scenarios,
and Societies (5S): A Formal Model for Digital Libraries. ACM TOIS. 22(2): 270-312.

[Hussein02] H. Suleman. Open Digital Libraries. Doctoral Dissertation. Dept. of Computer Science, Virginia
Tech, 2002. http://scholar.lib.vt.edu/theses/available/etd-11222002-155624/

[Kelpaure03] R. Kelapure. Scenario-Based Generation of Digital Library Services. Master Thesis. Dept. of
Computer Science, Virginia Tech, 2003. http://scholar.lib.vt.edu/theses/available/etd-06182003-055012/

[Larsen03] R. L. Larsen. Knowledge Lost in Information – Report of the NSF Workshop on Research
Drections fro Digital Libraries. June 15-17, 2003, Chatham, MA, 2003

[Licklider65] J. C. R. Licklider. Libraries of the Future. MIT Press, Cambridge, Mass.

[NSDL04] The National Science Digital Library. http://www.nsdl.org. (as of May, 2004).

[Payette02] S. Payette, T. Staples: The Mellon Fedora Project. Proc. of ECDL 2002: 406-421

[Sompel03] H. Van de Sompel. Roadblocks. In NSF Workshop on Research Directions for Digital Libraries.
June 15-17, 2003, Chatham, MA, 2003

[Witten03] I. H. Witten, D. Bainbridge: How to Build a Digital Library Morgan Kaufmann, 2003

