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Digital libraries have eluded definitional consensus and lack agreement on common models. This makes comparison of 
DLs extremely hard, promotes ad-hoc development, and impedes interoperability. In this paper we propose a formal 
ontology for digital libraries (DLs) that defines the fundamental concepts, relationships, and axiomatic rules that govern 
the DL domain, therefore providing a frame of reference for the discussion of essential concepts of DL design and 
construction. The ontology is an axiomatic, formal treatment of DLs, which distinguishes it from other approaches that 
informally define a number of architectural variants.   The process of construction of the ontology was guided by 5S, a 
formal model for digital libraries.  The resulting ontology can be used to classify, compare, and differentiate the features 
of different DLs. To test its expressibility  we have used the ontology to create a taxonomy of DL services and reason 
about issues of minimality, extensibility, and composability. 
 
1. INTRODUCTION 
Research in Digital libraries (DLs) has historically been very pragmatic. While much attention has 
been paid to design and implement systems and architectures [Witten03, Castelli03, Payette02, 
Hussein02], create collections and services [NSDL04, CITIDEL04], and improve algorithms and 
methods [Giles03], very little has been done to understand the underlying fundamental concepts, 
their relationships, and the axiomatic rules that govern the DL domain, or in other words, to develop 
a theory of DLs. The necessity of such theory has long being advocated, from the origins of the 
field, illustrated by Licklider’s call for a unified Computer Science(CS)/Library and Information 
Science(LIS) model [Licklider65], to recent workshops on the future of digital libraries [Larsen04]. 
The absence of such a theory makes comparison of different DLs architectures and systems 
extremely hard, promotes ad-hoc development, and impedes interoperability. Its existence may 
enhance our ability to communicate about and identify new research areas [Sompel03]. 
 
In [Gonçalves04], we have presented a partial formal conceptualization of digital libraries by 
formally defining high-level DL concepts such as digital objects, collections, repositories, services, 
etc. from basic mathematical concepts such as sets, graphs, functions, sequences, and so forth in a 
bottom-up manner. However, such conceptualization is incomplete to define a DL theory. A theory 
should make explicit the implicit relationships that exist among the defined formal DL concepts as 
well as provide a set of rules or axioms that precisely define and constrain the semantics of concepts 
and relationships in the theory. This type of formal conceptualization has elsewhere been called an 
ontology [Doan03]. Ontologies specify relevant concepts – the types of things and their properties – 
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and the semantic relationships that exist between those concepts in a particular domain. Formal 
specifications use a language with a mathematically well-defined syntax and semantics to describe 
such concepts, properties, and relationships precisely.  
 
In this work, we define a formal, axiomatic ontology for digital libraries (DLs) that can serve as a 
frame of reference for the discussion of essential concepts of DL design. The process of 
construction of such an ontology was guided by 5S, a formal model for digital libraries. We use the 
resulting ontology to provide answers for questions such as: 1) how should DL services be built 
from the repository, its collections and metadata catalogs, and from the relationships among 
different societies that participate in the DL?; 2) which are the dependencies and consistency rules 
that should follow in a DL model?; 3) which are the fundamental and elementary DL services and 
how can services be built/composed from other DL services?.  
 
This paper is organized as follows. Section 2 summarizes our earlier results by giving a formal 
definition of DLs based on the 5S model. Section 3 builds on the core definitions to create an 
axiomatic, formal ontology for digital libraries. Sections 4 illustrates the expressiveness of the 
ontology by applying it to create a taxonomy of DL services and to reason about issues of 
minimality, extensibility, and composability. Section 5 includes a brief discussion of other practical 
applications of the ontology. Section 6 concludes the paper with a glimpse of future work. 
 
2. BACKGROUD: THE 5S MODEL FOR DIGITAL LIBRARIES 
According to the 5S formal model a digital library is a 10-tuple (Streams, Structs, Sps, Scs, St2, 
Coll, Cat, Rep, Serv, Soc) in which [Gonçalves04]: 
a) Streams is a set of streams, which are sequences of arbitrary types (e.g., bits, characters, pixels, 

frames); 
b) Structs is a set of structures, which are tuples,  (G, φ), where G= (V, E) is a directed graph and 

φ: (V ∪ E) → L is a labeling function; 
c) Sps is a set of spaces each of which can be a measurable, measure, probability, topological, 

metric, or vector space. 
d) Scs = {sc1, sc2, …, scd} is a set of scenarios where each sck =  <e1k({p1k}), e2k({p2k}), …, 

ed_kk({pd_kk})> is a sequence of events that also can have a number of parameters {pik}. Events 
represent changes in computational states; parameters represent specific locations in a state and 
respective values. 

e)  St2  is a set of functions Ψ: V× Streams→ (Ν × Ν)  that associate nodes of a  structure with a 
pair of natural numbers (a, b) corresponding to a portion of a stream.  

f) Coll = {C1, C2, …, Cf} is a set of DL collections where each DL collection Ck = {do1k, do2k, …, 
dof_kk} is a set of digital objects. Each digital object dok = (hk, Stm1k, Stt2k, Ωk) is a tuple where 
Stm1k  ⊆ Streams, Stt2k  ⊆ Structs, Ωk  ⊆ St2, and  hk is  a handle which represents a  unique 
identifier for the object. 

g) Cat = {DMC_1, DMC_2, …, DMC_f} is a set of metadata catalogs for Coll where each metadata 
catalog DMC_k = {(h, msshk)}, and msshk = {mshk1, mshk2, …, mshkn_hk} is a set of descriptive 
metadata specifications. Each descriptive metadata specification mshki is a structure with atomic 
values (e.g., numbers, dates, strings) associated with nodes.  

h) A repository Rep = {(Ci, DMC_i)} (i=1 to f) is  a set of pairs (collection, metadata catalog); it is 
assumed there exists operations to manipulate them (e.g., get, store, delete). 

i) Serv = {Se1, Se2, …, Ses} is a set of services where each service Sek = {sc1k, .., scs_kk}  is 
described by a set of related scenarios.  
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j) Soc = (C, R) where C is a set of communities and R is a set of relationships among 
communities.  SM = {sm1, sm2, …, smj}, and Ac = {ac1, ac2, …, acr } are two such 
communities where the former is a set of service managers responsible for running DL services 
and the latter is a set of actors that use those services. Being basically an electronic entity, a 
member smk of SM distinguishes itself from actors by defining or implementing a  set of 
operations {op1k, op2k, …, opnk} ⊂ smk. Each operation opik of smk is characterized by a triple 
(nik, sigik, impik), where nik is the operation’s name, sigik is the operation’s signature (which 
includes the operation’s input parameters and output), and impik is the operation’s 
implementation. These operations define the capabilities of a service manager smk. For 
example, SearchManager ⊃ {match(q:query, C:collection)1} indicates that a SearchManager 
defines an operation “match” with two parameters, a query and a collection.  

 
The above definition emphasizes syntactic aspects, i.e., how digital library concepts are composed 
or built from previously defined concepts.  In the next section, we will explore semantic relations 
and rules of the DL domain. 
 
3. DEFINING A DL THEORY THROUGH AN ONTOLOGICAL ANALYSIS 
OF THE 5S MODEL 
The crux of our contribution with the 5S model was, departing from abstractions of many DL 
architectural settings, recognizing and formally defining the essential participating concepts in the 
digital library discourse. In this section, we extend those results to define a DL ontology by 
specifying the fundamental collaborations or relations that exist among the DL participants and the 
sets of rules (or axioms) which constrain the semantics of concepts and relations in the ontology.   
 
We organize the presentation and development of the ontology according to the 5S model. For each 
‘S’, we list the concepts and the relations in which they take part. We consider first intra-model 
relations, i.e., the relations that occur only among concepts of the same ‘S’ model, along with the 
corresponding axioms or rules.  Afterwards, relations defined between concepts belonging to 
different Ss are defined representing inter-dependencies. It should be noticed in the discussion 
below that some concepts such as digital objects and indexes are inherently “cross-S” concepts, i.e., 
they are defined  in terms of concepts belonging to more than one ‘S’. For presentation purposes, 
we will include those “cross-S” concepts within the discussion about the ‘S’ in which they share 
most of their relationships.  
 
More formally, a domain is a set of objects of the same DL type. A DL type is characterized by a 
definition as in [Gonçalves04]. An object is of a type X if its properties (e.g., internal components, 
organization) satisfy the definition of X. Examples of DL types include the basic Ss and derivative 
types such as collections, digital objects, etc. An ontological concept is a domain. For example, the 
statement x ∈ Digital Object says that x is a digital object as defined in [Gonçalves04] and 
therefore describes x by the ontological concept Digital Object. An n-ary relation is a subset of the  
Cartesian product  C1 × C2 … × Cn of the domains defined by the respective DL concepts. Let R ⊂ 
A × B be a relation. Then R-1 = {(b, a)| (a, b) ∈R} ⊂ B × A is called the inverse relation of R. A 
predicate is a function from a Cartesian product to the Boolean values true or false. A predicate 

                                                 
1 To simplify notation, we will represent a operation opx = (nx, sigx, impx) by nx({pxk}) where {pxk} is the set 
of input parameters of opx. The output parameters and implementation can be added when a more full 
description of the operation is required. 
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p(x) built over a relation among concepts is true if x is a member of the relation, false otherwise. 
We now proceed to define our meaning of a DL ontology.    
 
Def: An ontology is a tuple  Ω = (Ontol_Concepts, Ontol_Rels) where: 

1. Ontol_Concepts is a family of ontological concepts, 
2. Ontol_Rels is a family of relations. 

 
Relations in Ontol_Rels may be operationally realized by one or more rules (e.g., first-order logic 
axioms) which intentionally specify or constrain which elements of a concept can participate in a 
relation. Ontol_Rules is a family of rules of a particular ontology. 
 
For notational purposes we will use bold to designate ontological concepts (or simply, concepts)  
and italics to define the corresponding predicate. We will use the dot “.” notation to denote 
components of the definition of concepts, for example “x.h” specifies the handle of a digital object, 
y.Img specifies the image (or range) of events of scenario y, and z.op specifies the set of operations 
of Service Manager z. We also may refer to a component of a tuple-oriented concept by its position 
in the tuple, for example, z(2) specifies the set of descriptive metadata specifications of a member 
of a catalog. Finally, we will represent a relation R ⊂ A × B by A R B. The notation for 3-tuple 
relations will use similar variants, depending on the semantics of the relation.  
            
Below we proceed to define the relations and rules of our DL ontology. The relations were defined 
by carefully analyzing all possible pairs of associations among concepts within the same and 
between Ss, and contextual information necessary to define some of these relations. 
 
3.1 Intra-Model relationships  
Streams  
• Concepts: {text,  image,  video, audio} 
• Relations:  

o contains ⊂ video × image ∪  video× audio  
Streams define the basic content types over which digital objects are built, the latter being 
the ultimate carriers of the information in the DL. However some complex types of streams 
(e.g., video) may themselves be associated with simpler types of streams (e.g., images, 
audio). This relation indicates that a video contains a image as one of its frames, or contains 
a specific audio recording. 
 

Structures 
• Concepts: {do, ms, C, DMC, Rep}. Key: do = digital object; ms = descriptive metadata 

specification; mss = set of descriptive metadata specifications; C = collection, DMC = metadata 
catalog for collection C, Rep = repository. 

• Relations: 
o is_version_of ⊂ do × do 

Different manifestations of a digital object are versions, which normally differ structurally 
or in terms of their content (e.g., format, encoding, etc.). This relation indicates that a 
digital object is a version of another digital object. Conceptually a digital object x is a 
slightly different version of digital object y in terms of their streams or structures. Note also 
that since handles are used as identifiers of digital objects they should be globally unique, 
so no two digital objects, version or not, share the same handle.  
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Rules. 1. Digital object handles are unique. 2. x  is_version_of y for two digital objects x 
and y  if  they differ in the handle component and at least one other component, but share at 
least one other of their components (e.g., they have the same set of streams, set of 
structures, or set of structured_streams). 
Symbolic rules. 1. ∀x, y  (do(x) ∧ do(y) ∧ ( x.hx = y.hy ) � x = y));  
2. ∀x,y (x is_version y ⇔ do(x) ∧ do(y) ∧ (x.h ≠ y.h) ∧ ( (x.Stt ≠ y.Stt) ∨ (x.Stm ≠ y.Stm) ∨ 
(x.Ω ≠ y. Ω)) ∧ ((x.Stt = y.Stt) ∨ (x.Stm = y.Stm) ∨ (x.Ω = y. Ω))).   

o belongs_to ⊂ ms × DMC ∪ mss × DMC  
Digital objects can belong to many different collections. Similarly, descriptive metadata 
specifications can belong to many catalogs. This relation makes the latter relationship 
explicit. 
Rule. x belongs_to y indicates that a metadata specification x is used to define an element of 
the metadata catalog y. 
Symbolic Rule. ∀x, y (x belongs_to y ⇔ (ms(x) ∧ DMC(y) ∧  (∃z ∈ y: x ∈ z(2))) ∨ (mss(x) ∧ 
DMC (y) ∧  (∃z ∈ y: x = z(2))) 

o part_of ⊂ C × C ∪ DMC × DMC 
Many DL collections and metadata catalogs are built by aggregating smaller 
subcollections/subcatalogs. One good example is the National Science Digital Library 
(NSDL) union catalog which is basically an amalgamation of the metadata catalogs of all 
the participant projects. 
Rule. x part_of y indicates that collection x is a subset of collection  y or metadata catalog  x 
is a subset of metadata catalog y. 
Symbolic Rule. ∀x, y (x part_of y ⇔ ((C(x) ∧ C (y) ∧ x ⊆ y) ∨ (DMC(x) ∧ DMC (y) ∧  x ⊆ 
y))) 

o describes ⊂ mss × do ∪ DMC × C;  
A digital object may potentially have many descriptive metadata specifications, for 
example, in standard formats (e.g., Dublin Core, MARC) for sharing purposes, or based on 
more detailed, community-oriented specific formats. Also qualitative properties of metadata 
catalogs such as completeness and consistency can be defined in terms of this relationship.  
Rules. 1. x describes y indicates that a set of descriptive metadata specifications x, 
belonging to some catalog q for collection p, describes the content of a digital object y, 
which belongs to that collection p. The set of metadata specifications x can describe only 
one digital object, therefore the describes relation between sets of metadata specifications 
and digital objects is a function. 
Symbolic rules. 1.1. ∀x, y (x describes y ∧  mss(x)  ∧  do(y) �  ∃ p, q, h:  C(p) ∧ DMC(q) ∧ 
((h, x) ∈ q)  ∧  (y ∈ p) ∧ (y(1) = h)); 1.2. ∀x, y, z (x describes y ∧  x describes z ∧ mss(x)  ∧  
do(y) ∧  do(z) �  y = z ).  
Rules. 2. The relation q describes p, (q, p) ∈ DMC × C indicates that a metadata catalog q 
describes a specific collection p. A complete catalog has at least one set of metadata 
specifications for each digital object in the collection it describes. In a consistent catalog, 
each set of metadata specifications describes (exactly) one digital object in the related 
collection. In other words, a complete describes relationship between a metadata catalog, 
and a collection defines a surjective partial function, and a consistent relationship defines a 
total function. Also note that it is very common that different metadata specifications (e.g., 
a Dublin Core and a MARC version)  may describe the same digital object, so in most cases 
the  describes function is not injective. 
Symbolic Rules. 2.1 Catalog/Collection Consistency:  ∀x, y, z (C(y) ∧ DMc(x)  ∧ mss(z) ∧  
x describes y ∧ z belongs_to x  �  ∃ p ∈ y:  z describes p); 
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2.2. Catalog/Collection Completeness: ∀x, y, z (C(y)  ∧  DMc(x)  ∧ do(z) ∧ x describes y ∧ 
z ∈ y  � ∃ m: (mss(m) ∧ m belongs_to x ∧  m describes z)) 

o stores ⊂ Rep × C × DMc 
Captures the fact that a pair (collection, metadata catalog) resides in a physical repository.  
Rule. r stores (x,y) indicates that a repository r stores a pair  with a collection x and the 
metadata catalog y which describes x.  

             Symbolic Rule. ∀x, y, z (x stores (y,z) � Rep(x) ∧ C(y) ∧ DMC(z) ∧ z describes y) 
 

Spaces 
• Concepts: {Vec, Pr, Measurable, Measure, Metric, Top}. Key: Vec= vector space; Pr = 

probability space; Measurable = measurable space; Measure = measure space; Metric = metric 
space; Top = topological space. 

• Relations 
o is_a ⊂ Measure × Measurable ∪ Pr  × Measure ∪ Metric  × Top ∪ Vec  × Top.     

x is_a y indicates that a space x has all the properties/constraints/operations associated with 
the definition of the space y and may include additional properties / constraints / operations. 
The is_a relationship is reflexive, transitive, and anti-symmetric, therefore mathematical 
spaces that participate in this relation define a partial order. 

 Scenarios 
• Concepts: {Se, Sc, e}; Key: Se = service; Sc = scenario; e = event. 
• Relations:  

o contains ⊂  Sc × e 
Make explicit the relationship that an event belongs to a sequence of some scenario of use 
of a DL service.  
Rule. sck contains ek_j indicates that an event ek_j = sck(j) is a element of  the image/range of 
a scenario sck, for some j belonging to the domain {1,2, …, dk} of sck.  Recall that scenario 
is a sequence of events, i.e., it is a function from natural numbers to a set of events.  
Symbolic Rule. ∀ x, y (x contains y ∧  Sc(x) ∧ e(y) � ∃j: (j ∈x.Dom ∧  y =  x(j)) ) 
o precedes ⊂ e × e × Sc;  happens_before ⊂ e × e × Sc 
A scenario of use represents a temporal sequence of events that a user (or another service 
manager) engages in while interacting with a DL service. The temporal ordering of events 
is captured by these relations.  
Rule 1.  x precedesz y indicates that an event x occurs immediately before y in the context of 
scenario z. x happens_beforez y indicates that both x and y are elements of sequence z, and x 
happens some time before y, i.e., the sequence value of x is smaller than the sequence value 
of y.  
Symbolic Rule 1. ∀ x, y, z (x precedesz y ∧ e(x) ∧ e(y) ∧ Sc(z) � ∃ i, j: (z contains x ∧ z 
contains y ∧ x = z(i) ∧  y=z(j) ∧ i + 1 =  j)) 
Symbolic Rule 2. ∀ x, y, z (x happens_beforez y ∧ e(x) ∧ e(y) ∧ Sc(z) � ∃ i, j: (z contains x 
∧ z contains y ∧ x = z(i) ∧  y=z(j) ∧ i <  j)) 
o includes ⊂ Se × Se ∪ Sc × Sc;  extends ⊂ Se × Se ∪ Sc × Sc 
Services exposed by a DL can be classified either as elementary or composite. Elementary 
services provide the basic infrastructure for the DL. Examples include collecting, indexing, 
rating, and linking.  Composite services can be composed of other services (elementary or 
composed) by reusing or extending them. For example, searching and browsing services 
use indexing and linking services, a relevance feedback service extends the capabilities of a 
basic searching service, and a lesson plan building service may use already existing 
searching, browsing, and binding services to find and organize relevant resources. The 
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problem of composability of services has gained considerable attention recently, mainly in 
the Web Services community [Benatallah03, Curbera02]. However, DL services are 
restricted to certain specific types with constrained inputs and outputs, therefore making the 
problem more manageable and amenable to domain specific techniques. Since DL services 
are described by correlated, generally slightly variant scenarios of use, similar notions can 
be applied to those scenarios. For example, consider scenario sc1= <search(q,C), 
results({(doi,wi)})> for a search service where q represents a query, C a DL collection, do a 
digital object, and w a weight. The scenario sc2 = <search(q,C), results({(doi,wi)}), 
relevant_docs{doj}, expanded_query(eq,{doj}), search(eq,C), results{(dok,wk)}> is an 
extension of sc1 representing a relevance feedback search.  
Rule 1. Let sc1= <e1,e2,…,en> be a scenario. A scenario sc2 = <e2x,…,e2y> includes scenario 
sc1 if it contains all  events of sc1 in the same order they appear, i.e., if event ei precedes 
event ej in sc1, the same relationship holds in scenario sc2, or, in other words, sc2 includes 
sc1 only if sc1 is a consecutive subsequence of sc2. 
Symbolic Rule 1. ∀x, y (x includes y ∧  Sc(x) ∧ Sc(y)  �  (∀z: e(z) ∧ y contains z � x 
contains z)  ∧ (∀p, q: e(p) ∧ e(q) ∧ p precedesy q � p precedesx q)) 
Rule 2. A service Se1 includes service Se2 if it includes all its scenarios, i.e., if  Se2 ⊆ Se1. 
Symbolic Rule 2. ∀x, y  (x includes y ∧ Se(x) ∧ Se(y) �  y ⊆ x). 
Rule 3. Let sc1= <e1,e2,…en> be a scenario. A scenario sc2 = <e2x,…,e2y> extends scenario 
sc1 if it contains all  events of sc1 in the same relative order they appear, i.e., if event ei 
happens before  event ej in sc1, the same relationship holds in scenario sc2, or, in other 
words,  sc2 extends sc1 only if sc1 is a subsequence of sc2. 
Symbolic Rule 3. ∀x, y (x extends y ∧  Sc(x) ∧ Sc(y)  �  (∀z: e(z) ∧ y contains z � x 
contains z)  ∧ (∀p, q: e(p) ∧ e(q) ∧ p happens_beforey q � p happens_beforex q)) 
Rule 4. A service Se2 extends service Se1 if Se2 includes all of Se1’s scenarios, and Se2 has 
new scenarios, i.e., there exist scenarios in Se2 which are not elements of Se1, or there exist 
scenarios of Se2 which extend  scenarios of Se1. 
Symbolic Rule 4. ∀x, y  (x extends y ∧ Se(x) ∧ Se(y) � y ⊆ x  ∧ (x≠ y ∨ ∃p, q: Sc(p) ∧ 
Sc(q) ∧ p ∈ x ∧ q ∈ y ∧ p extends q)) 
 

Societies 
• Concepts: {SM, Ac, op}; Key: SM = service Manager; Ac = actor; op = operation. 
• Relations 

o redefines ⊂ op × op 
A common reason to redefine or override an operation is to provide more specific 
functionality for a service manager which inherits an operation from another service 
manager (see below). 
Rule.  A redefined operation has the same name, and often (but not necessarily) the same 
signature, but a different implementation. 
Symbolic Rule. ∀x, y (x redefines y ∧ op(x) ∧ op(y) ⇔   x.n = y.n ∧ x.imp ≠ y. imp)  

o includes ⊂ SM × SM;  inherits_from ⊂ SM × SM 
Aggregation and generalization are two special types of relationships between service 
managers that foster reusability and extensibility. Aggregation, captured in the includes 
relation, models a “whole/part” relationship in which one manager as a whole has other 
managers as parts, or, in other words, if service manager x includes service manager y, it 
implies that y is required in order to use service manager x. Generalization, captured by the 
inherits_from relation, means that a manager has all the capabilities defined by another 
manager, potentially has additional ones, and can redefine others (polymorphism).  For 
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example, LessonPlanBuilding includes Binding Manager indicates that a service manager 
LessonPlanBuilding includes operations of a Binding Manager. Similarly, 
RelevanceFeedbackSearch Manager inherits_from Search Manager indicates that a 
RelevanceFeedbackSearch Manager has the same capabilities as the Search Manager as 
well as additional ones (e.g., for query expansion).  
Rule 1. x includes y indicates that a service manager x  has all operations defined in  service 
manager y plus others not defined in y. 
Symbolic Rule 1 . ∀x, y (x includes y ∧ SM(x) ∧ SM(y) �  y.op ⊆  x.op ∧ y.op ≠ x.op) 
Rule 2. x inherits_from y  indicates that a service manager x has all operations from the 
service manager  y and defines additional operations, or x redefines some operations of y. 
Symbolic Rule 2. ∀x, y (x inherits_from y ∧ SM(x) ∧ SM(y) �  (y.op ⊆  x.op ∧ y.op ≠ 
x.op) ∨ (∀z  ∈ y.op - x.op: ∃w ∈ x.op:  w redefines z) )  
o invokes: op × op 
It is generally useful to specify dependencies between operations when discussing issues of 
extensibility and reusability. For example, search_similar(do) invokes match(q:query, 
C:collection) indicates that a search_similar operation invokes a match operation, defined in 
a Service Manager x or in another manager  that x inherits from  or includes. 
Rule. 1. f invokes g indicates that operation f may invoke operation g, namely, that within 
the body of operation f there is an expression whose evaluation invokes g (g is a 
subfunction of f). The operation f defined in a service manager x may only invoke an 
operation g, if g also is defined in x or in another manager that x includes or inherits from.   
Symbolic Rule.  1. ∀f, g (f invokes g ∧ op(f) ∧ op(g) ∧ (∃p: SM(p) ∧ f ∈ p ∧ g ∈ p) ⇔ g is a 
subfunction of f ⇔ ∃ functions r, s: g = r ° f ° s  

o association: Ac × Label × Ac 
A generic relationship between actors without a pre-defined semantics, this one captures 
generic societal relationships between communities of actors. For example, the relation  
(Professor, “teaches”, Learner) is self-explanatory. 
 

3.2 Inter-Model Relations  
In this section, we identify several relations that cross the borders of Ss. Our emphasis here is on the 
relationships between the dynamic aspects of the DL, characterized by societies and scenarios, and 
the more “static” aspects of the DL, characterized by concepts in the other Ss. We also further 
explore other relationships among the three static Ss. 

 
Scenarios and Societies 
• Relations:  

o executes ⊂ e × <op> 
The changes of computational states which are triggered by events in a scenario are 
computationally realized by invoking operations defined on service managers.  Let <op> be 
the set of finite sequences from op. ek executes <op>j indicates that the list of operations 
<op>j = <op1j, op2j, …, opn_jj> is executed as the result of the occurrence of event ek. Also if 
Pk is the set of event parameters of ek and Pj is the union of all parameters of all operations 
in <opj>, Pj ⊆ Pk. For example, search(q,C) executes match(q,C) states that an event search 
executes an operation match (probably defined in a Searching Manager) between a query q 
and the set of digital objects in the collection C. 
o recipient ⊂ {SM ∪  Ac} × e 
 In a scenario it is normally useful to identify the societal members that receive events for 
the purpose of checking consistency, security, etc. For example, the following two 
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relationships specify recipients of events in a simple searching scenario:  Search Manager 
recipient search(q,C); Researcher recipient results({(doi,wi)}).  
Rule. recipient ⊂ {SM ∪  Ac} × e  indicates that a specific service manager or actor is the 
receiver of an event in a scenario. Any actor can be the receiver of any event. If the event 
has an execute relationship with some operation, the receiver must be a Service manager 
which should have this operation. 
Symbolic Rules. ∀x, y, z  (x recipient  y ∧  y executes z ∧  SM (x) ∧ e(y) � ∀w ∈ z.Img: w 
∈ x.op). 
o participates_in ⊂ {SM  ∪ Ac} × Sc 
This relation makes explicit the societal entities interacting in a scenario.  
Rule. Indicates that a service manager or actor x participates in a specific scenario y of a DL 
service by being a recipient of an event z of scenario y.  
Symbolic Rule. ∀ x, y (x participates_in y ∧  (SM(x) ∨ Ac(x)) ∧ Sc(y) �  ∃z: e(z) ∧ y 
contains z ∧  x recipient z)) 
For Service Managers, a consequence of the defined relations is that only operations 
defined in the participating managers should be associated with events of the scenarios in 
the service.  This gives rise to the following consistency rule between a scenario and a 
society model. 
Scenarios-Society Consistency Rule. A scenario x is consistent with regards to a set of 
service managers Y if each operation executed by each event in the scenario is defined in 
some service manager y ∈ Y. 
Symbolic Rule. ∀x, y, z, w (Sc(x) ∧ e(y) ∧ op(z) ∧ x contains y ∧ y executes w ∧ z ∈ w.Img 
� ∃p: SM(p) ∧ p partipates_in x ∧  z ∈ p.op). 
o uses ⊂ Ac  × Se 
In many real DL settings it is useful to specify that only specific kinds of Actors may be 
allowed to use certain services. For example, while a researcher should be allowed to use all 
information seeking services, services such as “lesson plan building” and “dissertation 
submission approval” should be used only by teachers and archivists, respectively. 
Rule. Indicates that an Actor is allowed to use a specific service by participating in some of 
the services’ scenarios.  
Rule. ∀ x, y (x uses y  ∧ Se(y) ∧ Ac(x) �  ∃z: Sc(z) ∧  SM(w) ∧ z ∈ y ∧ x participates_in 
z)  
o runs ⊂ SM × Se 
Rule.  Service Manager  x runs service y  if all operations executed in all scenarios of y are 
defined on x or in managers that x includes or inherits from. 
Symbolic Rule. ∀x, y  (x runs y ∧ SM(x) ∧ Se(y) � ∀ z, p, q, r: (Sc(z) ∧ e(p) ∧ op(r) ∧  z ∈ 
y ∧  z contains p ∧ p executes q ∧ r ∈ q.Img �  r ∈ x.op) 
 

Structures, Streams and Spaces 
• Relations: 

o IC ⊂ H ×  θ  × {Vec ∪ Pr ∪ Metric}  
Let C ∈ Coll be a collection, H be the set of all handles of digital objects in C, θ ⊂ ∪do(4), 
do ∈ C, be a set of all triples (node, stream, interval) associated to digital objects in the 
collection, where interval is a pair of natural numbers (a,b) corresponding to a portion of the 
stream (or a substream). An index IC is a function that maps specific substreams associated 
with nodes of  specific digital object structures to elements of a vector,  probability, or 
metric space. Normally, the elements of these spaces are built by extracting features (e.g., 
text terms, histograms) from the respective substream. In the case of a probability space, the 
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elements of H ×  θ are mapped to a finite set with a discrete measure assigning positive 
probabilities to elements of that set. 
Symbolic Rule. ∀x (x ∈ IC_i  � ∃y, z: do(y) ∈ Ci ∧ x(1)=y(1) ∧ z = x(2) ∧ z ∈ y(4)). 
∀C (Coll(C) ∧  (h, s ,v) ∈ IC  ∧ (h, s ,v’) ∈ IC  � v = v’). 

Scenarios and (Streams, Structures, Spaces) 
• Relations:  

o employs ⊂  Se × S3; produces : Se × S3  
Let S3 = Streams ∪ Strutures ∪ Spaces be the union of all concepts of the respective Ss. DL 
services manipulate, transform, and return instances of the concept types defined in S3. For 
example, the notion of distance (as defined by a metric space) or probability (as defined by a 
probability space) are essential to services which need to compute a similarity measure between 
objects in the DL or between a patron’s intrinsically vague information need and objects in the DL. 
Examples of services that normally employ spaces to compute these measures include searching, 
filtering, recommending, visualizing, classifying, and clustering. Also, services exist that transform 
DL objects (digital objects, metadata specifications, structures, streams) into different types of 
spaces for many purposes. Examples include services such as indexing, which transforms structured 
streams into elements of a vector or probability space, rendering or visualizing, which normally 
takes collections and transforms into a 2D/3D-metric space, or customizing, that normally 
transforms a space (e.g., a user interface (UI) or a distance function) into another personalized space 
(e.g., a customized UI or a personalized distance function [Fan]). 

Figure 1.  DL Ontology 
Due to the complexity and number of possible instances of this relation, we will postpone the 
discussion to the next section, where we will further characterize the relationships between services 
and the other “static” Ss by making explicit employed inputs and produced outputs of events in 
these services.  
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The resulting ontology is graphically depicted as shown in Figure 1. Each S model is represented as 
a circle containing the respective concepts. Normal lines represent inter-model relations while 
dotted lines correspond to inter-model relationships. Arrows linked to a whole indicate that the 
relationship can exist among all concepts in a S. 

 
4. A TAXONOMY OF DL SERVICES  
Our objective in this section is to further explore some of the most important types of relations in 
the DL ontology, namely the “employs” and “produces”  between Services and the other static “Ss” 
and the “extends” and “includes” relations among services. More specifically, in this section we 
want to answer questions such as: 1) Which DL elements are employed or produced by the different 
DL services? 2) Which are the fundamental DL services? 2) Which kinds of service composition are 
possible or valid? 3) Which DL services are elementary or composite? These relationships can give 
insights into how DL services can be built from other DL components such as repositories and 
societal interactions, as well as be composed with other services by extension or reuse. 
 
Table 1 shows a set of activities or services derived from an expanded list in a DL taxonomy 
presented in [Gonçalves04].  In the table each service is characterized by parameters (input, output) 
of the initial and final events of the scenarios that compose those services. All other previous 
definitions and keys apply here. Those definitions  are complemented with the following ones.  
Def. 1. A field fi is a label associated with a node of a structural or descriptive metadata 
specification.  
Def. 2. A query q is the representation of user interest or information need. The exact format of a 
query is left unspecified here since it is system-dependent.  
Def. 3. An annotation annik  is a descriptive metadata specification that exists only in reference to a 
digital object doi.  
Def. 4.  Hyptxt is an hypertext (see formal definition in [Gonçalves04]); anchor is a node of a 
hypertext. 
Def. 5. A personal binder biu_i is a subset of some collection Ck ∈ Coll for an actor u of Soc(1).  
Def. 6. A log_entry is a descriptive metadata specification about an event of a scenario. 
Def. 7. tfr ⊂  S3 × Spaces is a function that transforms any element of a concept in S3 into a space. 
Transformers = {tfr1, tfr2, …, tfrn} is a set of such functions. 
Def. 8.  Let {doi} = {doi1, doi2,…, doin } be a set of digital objects and Ct = {c1, c2,…,cm} be a set of 
labels for categories. A classifier classCt: {doi} → 2Ct is a function that maps a digital object to a set 
of categories. 
Def. 9.  A cluster cluk = {do1k, do2k, …, donk} is a subset of a set of digital objects. 
 
Table 2 shows an organized taxonomy of DL services featured in Table 1, derived from a deep 
analysis of the entries in that table. The key aspects of defining such a taxonomy were:  1) to 
separate services dealing with basic concepts such as collections and catalogs from those dealing 
with higher level societal requirements; and  2) to define the responsibilities and interrelationships 
among those services and how they collaborate. In this taxonomy, we define a fundamental service 
(denoted by bold) as either: 1) one that helps to create elements of basic concepts belonging to our 
minimal definition of a DL, such as digital objects, metadata specifications, collections, and 
catalogs; 2) one that belongs to the minimal set of DL services (e.g., Searching and Browsing) 
proposed in [Gonçalves]; or 3) one that supports the former services in terms of extension or reuse. 
Similarly a composite (denoted by underlining) DL service is one that takes input from some other 
service; otherwise the service is called elementary.  
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Table 1. DL services, and their inputs, outputs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. A taxonomy of DL services/activities. 
Infrastructure Services 
Repository-Building 
Creational Preservational 

Add_ 
Value 

Information 
Satisfaction 
Services 

                                                 
2 The definition of a browsing service in [Gonçalves04] includes a number of different outputs for browsing events over a 
hypertext, including internal structures of digital objects and their structured streams. For the sake of simplicity in this 
discussion we only will consider browsing services whose events’ output include only a collection of digital objects. 

Service User input Other Service Input Output 
Acquiring {doi} Ci Cj 
Annotating                  doi, anni_k (hi, {anni_m}) (hi, {anni_(m+k)}) 
Binding {doi}, bu_k {doj} bu_(k+i) 
Browsing  Anchor Hyptxt {doi} 2 
Cataloging doi, msi_k (hi, mssi_m) (hi, mssi_(m+k)) 
Classifying {doi} classCt, Ct {(doi, {ck_i})} 
Clustering {doi} none  {cluk_i} 
Conserving Ci none Ck 
Copying/Replicating Ci none Ck 
Crawling (focused) Ci none Ck 
Customizing 
(interface) 

aci , trfk spj spj_k  

Digitizing None none doi 
Disseminating {hx, …, hy} none {dox,...,doy} 
Evaluating {doi} none {(doi, wi)} 
Expanding (query) {doi} IC_i, qi  qj 
Extracting (structure) stmi none Ψik 
Filtering q, {doi} 

{doi}, ck 
IC_i 

classCt, Ct 
{dok}  
{dok} 

Harvesting  (metadata) {hi} none {(hi, mssi_m)} 
Indexing Ci   none IC_i 
Linking Ci none Hyptxtik 
Logging none ei({pi}) log_entryj 
Measuring Ci spj {(doi, wi)} 
Rating doi ,acj  none {(doi,acj,rk)} 
Recommending aci, Ck {(doi,aci,ri)} 

{(doi, wi)} 
{doj} 

Requesting hi none doi 
Reviewing (peer) {doi} none {(doi, wi)} 
Searching q, Ci IC_i {dok} 
Submitting dok,Ci 

doi, msik, DMC_j 
opk, smi 

none 
none 
none 

Cj 
DMCt 
smj 

Surveying {doi} none none 
Training (classifier) {(doi, {ck}i)} none classCt 
Translating (format) doi none doj 

Translating (language) doi none doj 

Visualizing {doi} tfrk spik   
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Acquiring 
Authoring 
Cataloging 
Crawling (focused) 
Describing 
Digitizing 
Harvesting 
Purchasing 
Submitting 

Conserving 
Converting 
Copying/Replicating 
Emulating 
Renewing 
Translating (format) 

Annotating 
Classifying 
Clustering 
Customizing 
Evaluating 
Extracting 
Indexing 
Linking 
Logging 
Measuring 
Rating 
Reviewing (peer) 
Surveying 
Training (classifier) 
Translating (language/format) 

Binding 
Browsing 
Disseminating 
Expanding (query) 
Filtering 
Recommending 
Requesting 
Searching 
Visualizing 
 

 
Another important aspect of the taxonomy which helps to establish connections between these two 
types of services in terms of reuse or extension relations is the realization that the output of 
infrastructure services is normally the input of some of the information satisfaction services. Many 
examples are illustrated in Figure 3 which focuses on fundamental services. Acquiring, authoring, 
cataloguing, describing, and submitting are fundamental infrastructure services which build catalogs 
and collections. An indexing service takes a collection and a catalog and produces an index used by 
both searching and browsing services. Linking services work together with indexes to produce a 
hypertext used for a browsing service to allow criteria-based, ordered, and hierarchical navigation 
of possibly large collections. 

 
Figure 3. Instantiations of the “Services Definition” model showing inputs and outputs of several examples of 

infrastructure and information satisfaction DL services. 
 
Figure 4 depicts reuse relations between fundamental and composite information services and 
between the latter and some non-fundamental, add-value services. Common to the composite 
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information satisfaction services depicted in the figure is the fact that all of them take a set of digital 
objects or a collection as input. Recommending takes a user representation (e.g., a expression of 
interest), and either the output of a Rating or Reviewing service, and produces a subset of the 
original set of digital objects. Filtering takes a user profile, or a classifier produced by a Training  
service, and also outputs a subset of a set of digital objects. Similarly, binding takes the output 
produced by searching or browsing services and returns a subset of it. Visualizing produces a space 
out of a digital object set/collection while Expanding a query takes the original query submitted to a 
Searching  service and a subset of the response set (i.e., relevant and/or non-relevant documents) 
and returns a modified query. 

Figure 4. Examples of Compositions of Services. 
 
Many other possible compositions are possible by analyzing the entries in Table 1. Since services 
such as Recommending, Filtering, Binding, Expanding query, etc., produce a set of digital objects, 
these sets can be further indexed for searching/browsing purposes. A Relevance Feedback service 
extends a Searching service and reuses a Expanding query service. An Ontology-Based navigation 
service may reuse  Linking and  Classification services while a lesson plan building service may 
reuse searching, browsing, binding, and describing services. An advanced searching service may 
reuse an Extracting structure and extend a Searching service to provide support for fielded queries. 
 
5. Practical Applications: Brief Discussion 
Space prevents us of elaborating further on the practical implications and use of the proposed 
ontology. Therefore we only briefly mention some previous applications and ongoing work with the 
ontology. Previous work include: 1) reengineering a digital library specification language 
[Gonçalves02, Rohit03]; and 2) developing an XML-based log standard for digital libraries 
[Gonçalves02b]. Ongoing work include: 1) developing a model of quality in digital libraries; and 2) 
contrasting disparate  DL architectures by comparing what results from expressing them according 
to the formal ontology model. 
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6. Conclusions and Future Work 
We have presented a digital library formal ontology which complements the syntactical definitions 
of DLs with semantic relationships and governing axiomatic rules, therefore producing a core  
theory for the field of digital libraries.  A taxonomy of digital library services based on the ontology 
was presented and used to reason about issues of extensibility/reusability in DLs. Current and future 
work, besides that described in section 5, include:  1) expanding the  services taxonomy to include 
pre- and post-conditions for service composition; and 2) creating and proving lemmas and theorems 
about the DL concepts and relationships defined in the ontology. 
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