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Abstract

We describea new probabilisticapproach in the languagemodelingframework that capturesadaptively

the local termdependenciesin documents. Thenew modelworks by boostingscoresof documents that con-

tain topic-specificlocal dependenciesandexhibits the behavior of the unigrammodel in the absenceof such

dependencies. Contributionsof the currentwork includeadaptingvan Rijsbergen’s (van Rijsbergen, 1979)

work in the classicalprobabilisticframework to the languagemodelingframework andadaptive modelingof

within-sentencedependencies.

Weevaluatedourmodelontwodifferenttasksof theTopicDetectionandTracking(TDT) researchprogram,

namelyStoryLink DetectionandTopic Tracking.Our resultsshow thattheLocaldependency languagemodel

consistentlyoutperformsthebasicunigrammodelon boththetasks.

1 Intr oduction

LanguageModels have beenfoundto bevery effective in several informationretrieval tasks. In theLanguage

Modeling approach,we measurerelevance of a document (or a query) to a topic by theprobability of its gen-

erationfrom the topic model (Ponte andCroft , 1998). Onemajorassumptionmadein theunigram language

modeling is thenäıveBayes’assumptionof independenceof all termswith respectto oneanother. Thisallowsus

to compute theprobability of generation of a document � from a topic model � astheproduct of probabilities

of generationof eachtermin thedocument,asshown in thefollowing equation:

��� ��� �
	��  �������� ����� � � �
	 (1)

�
is a termin thedocument.



But to quote the famous probability theorist De Finetti, “dependenceis the norm ratherthanthe contrary”

(De Finetti, 1974). From our own understanding of naturallanguage, we know that the assumptionof term

independenceis a matterof mathematicalconvenienceratherthana reality.

However, the ‘bag of terms’ approachof the unigram languagemodel, asshown in equation 1, ignoresall

thedependenciesandany otherpositional informationof termsin the document. Hence,it seemsdesirableto

haveamoresophisticatedmodel thatis capableof capturing thesemanticsof documentsratherthanjust theterm

distributions. A first steptowardsachieving this objective is capturing termdependencies,sincedependencies

establishassociationsbetweentermsandmayshedmorelight ontheunderlyingsemanticsof thedocumentthan

unigramtermdistributionsalone.

Thepresent work is anattemptto relaxthenäıveBayes’assumption throughcapturing local termdependen-

ciesusinganew variationof thelanguagemodelingapproach.

The remainder of the report is organizedas follows. Section2 summarizes attemptsmadein the pastin

capturing dependencies.We present themethodologyof thenew Adaptive Local Dependency (ALD) language

modeling approachin section3. In this section,we describethe motivation behindthe approachandseveral

modeling issuesinvolved. We evaluatethecomplexity of ALD model andcompare it with thatof theunigram

model in section4. In section5, we presenta few interestinginsightsinto why we think our new model works

betterthantheunigrammodel. Section6 describes someof theimplementationdetails,while section7 presents

a brief descriptionof Topic DetectionandTracking paradigm andtwo subtaskscalledLink detectionandTopic

tracking. In section8, we describetheexperimentsperformedandpresent theresultsobtainedon two different

tasks.Section9 endsthediscussionwith a few observationsandremarksontheperformanceof theALD model.

2 Past work

A vastmajority of IR modelsassumeindependenceof termsbecausetheassumptionleadsto a tractablerepre-

sentationandmostIR systemspracticallyhave workedwell under this assumption. Therehave beenvery few

successfulattemptsat modelingdependenciesespeciallyin thedomainof formal probabilistic models.

Keith vanRijsbergenpresentedanapproachto capture documentlevel termdependencieswithin theframe-

work of theBinary IndependenceRetrieval model (RobertsonandSparckJones,1976). His probabilisticmod-

eling approachusingExpected Mutual InformationMeasure(EMIM) scoresbetweenterms (van Rijsbergen

, 1979). A maximum spanning tree is constructed, with the termsas the nodesand the EMIM scoresas the

weightededges.Thetreecapturesthemaximumdependenciesbetweentermsin thedocument.Thesedependen-

ciesareusedin computing thesimilarity scorebetweentwo documents.However, theapproachunfortunately

did notshow promisingresults.

In otherrelatedwork, RobertsonandBovey (RobertsonandBovey , 1982) tried including term pairsthat

have observabledependenciesasseparatetermswith weightsslightly different from the sumof weightsor in

someotherway to allow for specificdependencies.

Turtle andCroft (Turtle andCroft, 1990) investigatedthe useof an explicit network representationof de-

pendenciesby means of Bayesianinferencetheory. Theuseof sucha network generalizesexistingprobabilistic

models andallows integrationof severalsourcesof evidencewithin asingleframework.

FungandCrawford (Funget al., 1990) workedon concept basedinformationretrieval thatcaptures depen-

denciesbetween‘concepts’usinga Bayesianinferencenetwork. Onedrawbackof this approachis thattheuser

hasto identify theconcepts manuallyin eachdocument.



Attemptswerealsomadeto capture termdependenciesusingthevector spacemodel. Thegeneralizedvector

spacemodel (Wonget al., 1985) is onesuchexample whichshowedencouragingresults.

In theareaof languagemodeling,mostattemptsatcapturing dependencieshavebeenin theformof multigram

languagemodels (SongandCroft, 1999). Bigramandtrigrammodels, though highly successfulin thespeech

recognition task,havenotmetwith greatsuccessin thedomainof informationretrieval systems.

In a very recent work, NallapatiandAllan (Nallapati andAllan, 2002) have shown thatmodeling sentences

asmaximum spanning treesin thelanguagemodeling framework, similar to vanRijsbergen’s (vanRijsbergen,

1979) modelingof documents,holds somepromisein capturing local dependencies.Their SenTree modeldoes

not perform aswell asunigram model,but they found that a linear mixture of SenTreeandunigram models

betterstheunigram performance,but only in regionsof low falsealarm.

Thepresent work, theAdaptive Local Dependency (ALD) language model is animprovement on theSenTree

model. TheALD model combinesthefeaturesof bothunigramandSenTreemodelsinto asingleframework. We

will show in our resultssectionthatthenew model consistentlyoutperformstheunigrammodel ontwo different

TDT tasks.

3 Methodology

Ourgoalis to build a topicmodelfrom astory � � or asetof stories��� ��������� � �"! andthendecidewhetheranew

story, say � �$# � , is predictedby thatmodel. Thissectiondescribesthemethodologyof thenew model.

3.1 Exploiting sentence structure

A universalfeatureof all documentsis thesyntacticstructureof sentences.Eachsentenceconveys a complete

ideaor a concept througha specificordering of termssampledfrom thelanguage vocabulary. Thesamplingand

ordering of termsdepends on the intendedconceptandtheunderlying grammar of the language. Theconcepts

or thesemanticsof theentiredocumentareultimatelyexpressedasagroupingof suchorderedsamplesof terms

calledsentences.In otherwords, the semanticsof a documentareexpressedthrough the syntaxof sentences.

Hence,we believe modeling sentences,ratherthantermsas individual entities,bettercapturesthe underlying

semanticsof thedocument.

As we have seenearlier, unigramlanguage modelscompletelyignore thesyntacticformation of sentencesin

documents.In thepresent approach,weattemptto captureit bymodelingadocumentasacollectionof sentences

ratherthanasa ‘bagof terms’.We model eachsentencegraphically, asa forestof termsasweshallseelater.

3.2 Probability of Sentence Generation

In theALD languagemodel, weassumeeachsentenceto beindependentof theothersentences.Thisassumption

is certainlynotvalid but it is lessstringent thantheassumption of termindependence.Theassumptionallowsus

to compute theprobability of generation of a storyfrom a topicmodelasfollows:

��� �%� �
	�� �&(' � ���*) � �
	 (2)



where � is a topic modeland
)

is a sentencein a story � . The tricky part is computing the probability of

generationof eachsentence.Ideally, onewouldcompute theprobability of generationof a sentenceasfollows:

���+) � �
	�� ���,� � � �.- �/����������� � � � �
	 (3)

where
� � is thei-th termand 0 is thenumber of termsin thesentence

)
. We alsoassumethatall thetermsin the

sentenceareunique, i.e., we ignoreany repeatedoccurrencesof termswithin asentence.Thisassumptionallows

usto formulateourmodel in acleanway.

The joint probability in the right hand sideof equation 3 is almostimpossibleto estimatedueto the sparse

natureof trainingdata.To overcomethis problem, we modelthesentenceasa forestin anapproachmotivated

by vanRijsbergen’s work. (vanRijsbergen, 1979).

Given a sentence
)

anda model � , we first definethe following undirected,weighted graph 1 �+2 �43 	 as

shown below.

2 � � � � �
56) ! (4)3 � � ��� �4� �87 	9� � �:� �;7<562�=>����� �4� �87 � �
	@?BAC! (5)

and

D �,� �E� �87 	 5 3��FG�,� �4� �87 	H� I �,� �4� �87 � �
	
� J,K�L ���,� �4� �87 � �
	����� � � �
	 ����� 7 � �
	 (6)

where
����� �M� �87 � �
	 is the probability that

� � and
�@7

co-occur in the samesentencegiven the model � andFG��� �4� �87 	 , theweightassignedto theedge
��� �4� �87 	 is equal to themodel specificpointwisemutual information

measure(Manning andSchutze, 1999).

In otherwords,the setof nodes
2

in the graph 1 correspondsto the termsin the sentence
)

andan edge

existsbetweenterms
� � and

�@7
with a weight I ��� �:� �;7 � �
	 if andonly if they havea non-zerojoint probability

of within-sentence-co-occurrencewith respectto the model. An example sentence-graph 1 is illustratedin

figure1. Thegraph hasthreeconnectedcomponentsN � � N - and NPO asshown andcorrespondsto a sentence
)

thatconsistsof theterms � � � ���/�/��� �.Q ! . Thethicknessof theedgesis indicative of thevalueof edgeweightor

theprobability of within-sentenceco-occurrencewith respectto themodel.

Thefirst assumption we make is thatthegeneration of termsin eachconnectedcomponent in thegraph 1 is

independentof termsin otherconnectedcomponents.If RBST�U� � � �V5 NW! is thesetof termsin a connected

componentN of G, thenwecanwrite

���+) � �
	�X �
S 'ZY ��� R[S\� �
	 (7)

where
��� R]S^� �
	 is thejoint probability of all thetermsin theconnectedcomponentN . In theexample of figure
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Figure 1: A sentenceGraph

1, theprobability of sentencegenerationcanbeapproximatedasshown below.

����� � �/����� �.Q � �
	�X ��� R S`_ � �
	 ��� R Sba � �
	 ��� R Sdc � �
	� ����� � � �.- � �.e � �PQ � �
	 ����� Of� �
	 �����Pg � �.h � �Pi � �
	 (8)

Let’snow considerhow to approximatethejoint probability of termsin aconnectedcomponent N of 1 , given

by
��� RjSk� �
	 . Here,we follow theapproachlaid out by vanRijsbergen (vanRijsbergen , 1979). We assume

thatthejoint probability is equalto theproduct of first orderdependenciesasanapproximation to thechainrule

shown below.

����� ����������� � �l� �
	mX ��no��� �p��������� � �l� �
	
� ������� ���,�.q@r � �.q@s*t r�u � �
	vAWwyx ��z 	@{ z

(9)

where
��| � �/������� | � 	 is apermutationof theintegers } ������� 0 andx ��z 	 is a functionmapping

z
into integerslessthanz

and ����� q r � � qP~ � �
	�� ���,� q r � �
	 (10)

Thepermutationandthefunction x � � 	 togetherdefineadependencetreeandthecorresponding joint distribution� n � 	 is calleda probability distribution of first-order treedependence.

A problem that remainsis finding thedependencetreethatbestapproximatestheoriginal joint distribution.

We areaidedhereby a resultby Chow andLiu (Chow andLiu , 1968) that showed that if the edgeweights

betweenthe termsaremeasured by expectedmutual informationmeasure,thenthebestapproximation
�jn

that

hastheleastrelative entropy with thetruejoint is givenby themaximum spanning tree(MST) on thevariables� �p� � - �/������� � � . Oncethe MST is found, we cancompute the approximatejoint
�\n���� �p������� � ��	 by traversing

breadth-wise or depth-wise on the MST startingfrom any leaf nodeand defining the directionof the edges



to be sameas the direction of traversal. It canbe easilyshown usingBayes’ rule that the approximate joint��n���� �p������� � �C	 remainsthesameirrespectiveof thestartingnodechosen.

For example, let’s considerthe graph in figure1. For eachcomponent,we build a maximum spanning tree

anddefinethe approximatejoint by the directededgesasshown in figure 2. The directionof conditioning is

markedby thedirection associatedwith anedge. As thefigureindicates,we chosevertex
��-

asthestartingleaf

nodeof component N � . Similarly,
��g

is thestartingnodeof component N<O . Component N - is a singletonnode,

hencethereis no treeassociatedwith it. Theapproximatejoint probability of termsin eachcomponentis given

asfollows.
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Figure 2: Bayesiannetworks definedoneachconnectedcomponent’smaximumspanning tree

��� R�S _ � �
	�X ���,� e � � �$� �
	 ����� Q � � �p� �
	@����,� � � � - � �
	 ����� - � �
	��� R�S a � �
	�� ���,� O � �
	��� R Sdc � �
	�X ���,�Ph � �Pi � �
	 �����.i � �Pg � �
	 ���,�@g � �
	 (11)

Thus, we seethat eachsentenceis modeledasa model-dependent forestconsistingof treesandsingleton

nodes.

3.3 Estimati ng the model parameter s

As wehaveseenin section3.2,to estimatetheprobability of sentencegeneration, all weneedaretheconditional

probabilitiesof theform
����� � � � 7 � �
	 for thedependenciesin theMST andunigramprobabilities of the form����� � � �
	 for the leaf nodesin theMST andsingletonnodesthathave no dependenciesassociatedwith them.

Typically theseparametersof themodelareestimatedfrom a singledocumentor a setof documents.Let � be

thedocumentfrom which we estimatethemodel parameters. We usethemaximum likelihood estimatesfor the



model parameters asshown below:

����� � � �
	�X�� N �,� �M� �j	��� ' � N �,� � �]	^� � }.�y��	 N ��� �M� 1 3 	��� '���� N �,� � 1 3 	 (12)

where N ��� � �j	 is the number of occurrencesof term
�

in document � and 1 3 is a large corpus of general

English.We haveuseda smoothing parameter � to prevent zeroprobabilitiesof unigrams.

Thefollowing maximum likelihoodestimatesareusedto compute thejoint andconditional probabilities:

���,� � � � 7 � �
	mX }� ) ���� 'Z& r s }� �f� �"� (13)

���,� � � �;7 � �
	mX }� )�7 � �� 'Z& r s }� �f�p�B} (14)

where
)

is thesetof all sentencesin � ,
) � 7 is thesetof sentences in � thatcontain thewords

� � and
�P7

and
)�7

is thesetof sentencesin � thatcontaintheword
�k7

. Note thatwe have not usedany smoothing in estimating

thejoint andconditional probabilities.

3.4 Likelihood ratio

Finally, thestory’s relevancescorewith respectto a model is givenin termsof likelihood ratio which is defined

by thefollowing equation:

)�� K��p� � � � �
	�� ��� ��� �
	��� �%� 1 3 	
� � &(' � ���+) � �
	� � ' � ���,� � 1 3 	

(15)

Note that in computing the probability of document generation with respectto the general Englishmodel��� �%� 1 3 	 , weusetheunigrammodel.Computing thelikelihoodratiowith respectto thegeneral English model

provides a soundbasisfor comparisonof relevance andalso serves as a normalizing factor to sentenceand

documentlengths.

4 Computational comple xity

In this subsectionwe discussthetime andspacecomplexity of implementing theALD modelwith respectto a

singlestoryastheinput. We will assumethatthestorycontains � sentencesandat most � termspersentence.

Therunning timeof eachstepin thealgorithm is presentedbelow:

1. Constructing thegraph 1 of asentence
)

with weightededges:This requirescomputing pointwiseEMIM

for all pairsof termsin thesentence,eachof whichcanbedone in constanttime usinghashtables.Thus,

thisstephasa complexity of � � � - 	 .
2. Buildingamaximumspanningtreefor eachof thecomponent. Theworstcaseariseswhen1 is afully con-

nectedgraph. Weuseagreedyalgorithm to build theMST. Therunningtimeof thisstepis � � � -�� K�L � �^	4	



Data set Unigram ALD
TrainSet(6,361pairs) 3 15
TestSet(27,538pairs) 10 70

Figure 3: Comparison of average runtimeof unigram andALD models on training andtestsetsin the link
detectiontask:All valuesarein seconds.

if we usedisjoint-setforestimplementationwith unionby rankandpathcompressionheuristics(Cormen

etal., 1990).

3. Computing theprobability of occurrenceof thesentencefrom thetopicmodelandthebackgroundmodels:

This requiresgeneratingtheconditional probabilitiesof eachedge in theMST andtheunigram probabil-

ities of thestartnodeandany othersingletonnodes,eachof which canbedonein constanttime. Hence,

thisstephasa complexity of � � �^	 , which is thesizeof theMST.

Thus, theoverall running time persentenceis � � � -�� K�L � �^	4	 . Thus, for theentiredocument,thecomplexity

is simply given by � � ��	^��� � � -�� K�L � �k	:	��v� � � - � � K�L � �k	:	 . In comparison,theunigram modelhasa time

complexity of only � � ����	 .
In practice, we noticethat the run time of the ALD model is only about5-7 timeshigher thanthat of the

unigrammodelasfigure 3 indicates.We believe thatdespitetheslightly lower speed,it is still fastenough for

mostrealtime applications, considering thefactthattheALD model canprocessasmany as24,000 storypairs

a minute.

Let us now look at the space-complexity of the model. Clearly, we needto index the joint andconditional

probabilities for eachpair of terms
��� � � � 7 	 in a sentence

)
in order to build the graph 1 (equation 5) and

evaluatethejoint probability of a sentenceover themaximumspanning treeof eachcomponentin 1 . Thus each

sentenceneedsa spaceof � � � - 	 , henceeachdocumentneedsa spaceof � � � - �%	 . Theunigrammodel,on the

otherhand,hasaspace-complexity of only � � ���^	 .
5 Discussion

In thissectionwewill try to justify modeling within-sentencedependenciesandexplain theintuition behind why

weexpectthenew model to performbetterthanthetraditionalunigrammodel.Apart from effectiveness,wewill

alsodiscussthefeaturesof thealgorithm thatmakesit efficient.

5.1 Why model sentences?

We believe that themostsignificantdependenciesbetweentermsoccurwithin a sentencein the form of noun-

phrases(e.g., gray-whale,balloon-adventure,Navy-sailor), proper names(e.g., Timothy-McVeigh,Bill-Clinton),

associations(e.g., Glenn-NASA, asteroid-earth, Schindler-Oscar, Bush-Washington),etc.Dependenciesdoexist

outsidesentenceboundariestoo,but wepositthatthey donot tendto beasstrong. This intuition explainsseveral

attemptsin the pastto incorporatenounphrases,proper nameassociations,etc. explicitly in retrieval models

(Croft et al., 1991). We believe our model includesall of thoselocalizeddependenciesnaturally into a unified

probabilistic framework. Froma computationalviewpoint, modelingonly within-sentencedependenciessaves

usconsiderablecomputationalcostsin comparisonto modeling dependenciesover theentiredocument(section

4), at thesametimehopefully notcompromisingtoomuchoneffectiveness.



5.2 How might it help impr ove effectiveness?

Recall that our task is to compute the probability of generation of story � - with respectto a model � � � � 	
estimatedfrom story � � . Wewill focusonthegenerativeprobability

���+) � � � � � 	4	 of aparticular sentence
)

in� - for illustration.

Considerthegraph 1 of
)

definedwith respectto themodelof � � . Let
� � and

� 7
be two termsin

)
. As

shown in equation 5, anedge
�,� � � � 7 	 existsin 1 if andonly if theprobability of within-sentence-co-occurrence����� � � � 7 � �
	 is non-zero. Sincewe estimate

����� � � � 7 � �
	 (seeequation13) entirely from � � ’s statistics,it

follows thatanedge
��� � � � 7 	 exists in 1 only if the terms

� � and
� 7

co-occur in at leastonesentencein � � .
Call all term pairs

��� �4� �87 	 of
)

that co-occur within a sentenceboundaryin � � ‘active’ termpairs. Thusall

edgesin 1 correspondto active term pairsof
)

. If the edge
��� �4� �87 	 happens to be a part of the maximum

spanning treeof oneof the components N in 1 , then,the approximategenerative probability of the sentence���+) � � � � � 	:	 will containa termof the form
���,� � � �87 � �
	 (seeequation11 for example). Thusin effect, the

ALD model searchesfor active termpairsin
)

andcomputestheir conditional probabilities,while computing

unigramscoresfor all other terms.In theabsenceof any active termpairs,theALD model smoothly collapses

to a unigramgenerative model sincethegraph 1 would thenonly consistof independentsingletonnodes.

While it is certainlynotguaranteedby theory, it turns out thatthemaximumlikelihood estimateof thecondi-

tional probability
����� � � � 7 � �
	 is almostalwaysanorderof magnitude higher thanthecorresponding unigram

estimate
���,� � � �
	 . This canbeattributedto thefactthatco-occurrence of any pair of termsis typically a much

rarerevent thaneachof their occurrences.Thus,if the sentence
)

contains many active term pairs,the ALD

model booststhegenerative probability
���*) � �
	 via theconditional probabilities.

We expect that the sentence
)

containsconsiderablenumber of active term pairs if � - , the document that

contains
)

, is onthesametopicasthatof � � andnoneotherwise.In suchascenario,if � - is on-topic,thescore

assignedby ALD model is typically muchhigherthanunigramscore.If � - is off-topic with respectto � � , the

generativeprobability computedby theALD modelcorrespondsto unigramscore.Thus weexpectthaton-topic

pairsandoff-topicpairsarewell-separatedby theALD modelresultingin betterperformance.

5.3 What makes it efficient?

A simpleunigram model hasprovennotonly very effective in mostIR tasks,but is alsooneof themostefficient

algorithms in termsof its time andspacecomplexity, mainly owing to its simplicity. Any model that incorpo-

ratesmoreinformationthansimpletermdistributionsaloneseemsto invariably losesout to unigrammodelon

efficiency. We believethatwehavemanagedto improveon theeffectivenessof theunigrammodel considerably

while limiting thelossin efficiency within reasonable boundsfor all practicalpurposes.

As we have seenin section4, the time complexity of theALD modelis only a factorof � � � � K�Lf�^	 higher

thanthatof theunigram model,while thespacecomplexity is higheronly by a factorof � � �^	 , where � is the

maximum number of termsin a sentence.

Oneof the reasonsfor its efficiency beingalmostcomparablewith that of the unigram model is the fact

thatwe take into account only within-sentenceco-occurrencesasdependencies,therebyreducing thenumber of

first-order dependenciesto evaluatefrom a maximum of � �4� ����	 - 	 to just � � � - ��	 , a reduction by a factorof� � �%	 .
Another important reasonthatmakesthemodelsuitablefor mostreal-life systemsis the fact that themodel

doesnot require one to estimatethe conditional probabilities
����� � � �87 � �
	 over the entirespace � 2 ����� 2 � ,



where � 2 � is thevocabulary sizeof thetopic of � . Recallthata necessary(but notsufficient)conditionthatwe

computeconditional probabilility
���,� � � �87 � �
	 for apairof terms

�,� �4� �87 	 is thatthey areactive(seesubsection

5.2)in document � from whichwe estimatethemodel � . Thus,for eachdocument � from whichweestimate

a model � � �]	 , it is enough for us to index a priori theconditional probabilities of only thosetermpairsthat

co-occur in thesamesentencein � . Thenumber of thesetermpairsis muchlessthantheentirespaceresulting

in considerable savings.

Thereis anotherfactorthatkeepsourmodelveryefficient: asequation 15indicates,wecomputeonlyunigram

probabilities to estimatethe generative probability of a documentfrom the generalEnglish model 1 3 . Note

alsothat we do not usesmoothing in estimatingthe conditional probabilities
���,� � � �87 � �
	 (seeequation 14).

This effectively means thatwe never have to compute a conditional probability distribution at thecorpus level,

which would have beenconsiderably expensive. Notethatsinceconditional probabilities areevaluatedonly for

active term-pairs,thereis no zero-probability problem andhencesmoothing is renderedunnecessary. Although

smoothing is found to improve effectivenessin many applications, in our experiments,we have observed that

smoothing theestimatesof conditional probabilitieswith conditional estimatesfrom ageneralEnglishmodel did

not resultin any significant improvementin effectiveness.Hencewe haveabandonedsmoothingtheconditional

probability estimatesin returnfor huge savingsin time andspace.

5.4 Comparison with the Sentree model

Thecurrent modelis animprovement ontheSenTreemodel (Nallapati andAllan, 2002). In theSenTreemodel,

for any sentence
)

, weconstruct amaximum spanning tree(MST) over thefully-connectedsentencegraph with

respectto thestatisticsof thetopicmodel � . Thus,evenwhentopic-relateddependenciesmayexist only among

asmallfractionof term-pairsin asentence,theMST imposesadependency structureover theentiresentence.As

a result,mostof thedependenciesevaluatedby theSenTreemodelturnout to bespurious, resultingin degraded

performance(NallapatiandAllan, 2002). TheALD modelseeksto overcomethisdrawbackby adaptively mod-

eling only topically relevantdependenciesandexhibiting a unigram-like behavior by default. Thusit combines

thebestpropertiesof boththeSenTreeandtheunigram model into a singletheoreticalframework.

In termsof efficiency too, the ALD model outperforms the Sentreemodel. The Sentreemodel requires

smoothing of theconditional probabilitieswith thegeneral Englishestimatesto overcomethezero-probability

problem,which involveshugetime andspaceoverheads.TheALD model,on theotherhand, computescondi-

tionalprobabilitiesonly for ‘active’ termpairsandhencedoesnot require smoothing.

6 Implementation details

In this section,we discusssomeof thesystemimplementationdetailsthatarenot coveredin thediscussionon

methodologyof themodel.

During theprocessof trainingthemodel,we noticedthatourexpectation thatactive termpairsoccuronly in

on-topic storypairs(seesection5) is notstrictly valid. In fact,ourdataanalysisrevealed thatmany commonterm

pairssuchas‘people say’, ‘officials stated’co-occur within a sentence boundaryin many off-topic story-pairs.

Suchtermco-occurrencesdo not carrymuchinformationabout the topical contentof thestories,but theALD

model incorrectly assignsedgesbetweensuchterms.These‘spurious’ edgesultimatelycreepin asconditional

probabilitiesandboost thescoresof off-topic pairs.This resultsin a large number of falsealarmsresultingin a

degradationin theperformanceof themodel.



To suppresstheeffectof thesespurioustermpairs,wemodified thedefinition of edgesin equation 5 to include

thefollowing extracondition.

3 �
� ��� � � � 7 	@� � � � � 7 5�2[=���,� �4� �87 � �
	@?BA = � ��� � 	 � �,�87 	@? NW! (16)

where � ��� 	�� ����� � �
	����� � 1 3 	 (17)� �,� 	 is thelikelihood ratioof theprobability of term
�

giventhemodelwith respectto ageneralEnglishmodel.

It is similar to thefamiliar tf-idf weight andtells ustherelative importanceof thetermwith respectto thetopic

model. Thus,themodifieddefinitionof anedgein equation 16requiresthemodelto form anedge
�,� �4� �87 	 only

if the‘relativeimportance’of boththetermsexceedsa threshold N . WeempiricallydeterminedthebestvalueofN to be2500 andfixedit at this valueonall our runs.

6.1 Tools

Clearly, theALD model requiresusto identify theboundariesof sentencesin documents.Wehaveusedasimple

heuristic-rule basedsentencesegmenterto detectsentenceboundaries.We refer the readerto (Nallapatiand

Allan, 2002) for moreinformationon theheuristicrulesused.

Additionally, we have useda list of 423mostfrequentwords to remove stopwords from stories.Stemming

is doneusingthePorterstemmer (Porter, 1980) while the indexer andtheALD model areimplementedusing

Java.

7 Topic Detec tion and Tracking

Thenew modelwepresentin thiswork is expectedto addresssomeof theissuesin TopicDetectionandTracking

(TDT) (Allan etal., 2002). TDT is a researchprograminvestigating methodsfor automatically organizingnews

storiesby theevents thatthey discuss.It includesseveralevaluation tasks,eachof which exploresoneaspectof

thatorganization. In this section,we describetwo taskscalledLink DetectionandTopicTracking.

7.1 Link Detection task

Link Detectionrequiresdetermining whetheror not two randomly selectedstoriesdiscussthesametopic. In the

languagemodeling approachto link detection,we build a topicmodel � � � � 	 from oneof thestories� � in the

pair
� � � � � - 	 . We thencompute thegenerative probability of thesecondstory � - from themodel � � � � 	 as

shown below. )`� K��p� � � ��� � - 	�� ��� � - � � � � � 	4	 (18)

Sometimes we maycomputea two-way score to addsymmetry to theformula,asshown below:

� � K��p� � � � � � - 	�� }¡ �,��� � - � � � � � 	:	 � ��� � � � � � � - 	:	4	 (19)

If thescoreexceeds a pre-determinedthreshold, thesystemdecidesthetwo storiesarelinked. Thesystem’s

performanceis evaluatedusinga topic-weightedDET curve (Martin et al., 1997) that plots missrateagainst



falsealarmover a largenumber of storypairs,at differentvaluesof decision-threshold. A Link Detectioncost

function NP¢ � ��£ is thenusedto combine themissandfalsealarmprobabilities at eachvalueof threshold into a

singlenormalizedevaluation score(TDT, 1998). Weusetheminimumvalueof N ¢ � ��£ astheprimarymeasureof

effectivenessandshow DET curvesto illustratetheerror trade-offs.

7.2 Topic Tracking

TheTDT topictrackingtaskis definedto bethetaskof associatingincomingstorieswith topicsthatareknown to

thesystem.Eachtarget topic is definedby asetof trainingstories.Thetrackingtaskis thento classifycorrectly

all subsequentstoriesasto whetheror not they discussthetargettopic.

Similarto thelink detectiontask,weestimateamodel ��¤ for topic � fromthesetof its trainingstories.Given

any subsequent story � , we measure theprobability of its generationwith respectto themodel
��� ��� �¥¤d	 . The

systemdecides thatthestoryis on-topic if thescoreexceedsapre-definedthreshold. WeusetopicweightedDET

curves andaminimumcostvalueto evaluatethesystem’s performance,asin link-detectiontask.

8 Experiments and Results

In this section,we describetheexperimentswe performedon link-detectionandtopic-trackingandpresent the

resultsweobtained.

8.1 Stor y Link Detection

Thetrainingsetwe usedis a subsetof theTDT2 corpus that includessix monthsof materialdrawn on a daily

basisfromsixEnglish-only newssourcesthataremanuallytranscribed (whenthesourceis audio).Thecollection

comprises6,361storypairsandrelevancejudgmentsfor eachof them.Thetestsetis theTDT3 corpusconsisting

of the27,538 manually transcribedstorypairsfrom multiple languages. If thesource is non-English,we have

usedmachinetranslations thataremadeavailablein thecorpus. To derive thegeneral Englishunigrammodel,

we haveusedthesamecorporaasweperformedexperimentson.

We first trainedthe unigram model on the training set andusedits bestperformance(at �¦�§A � ¡ ) as the

baselinefor all the experiments. In our training experimentson the ALD model,we performeda searchfor

thebestperforming values of themodelparameters, namelytheunigram smoothing parameter� andtheedge

threshold N . TheDET curve of thebestperformingvaluesof ���TA � ¡ and N¨� ¡�© A�A is shown in figure4. It is

clearfrom theplot thattheALD model outperforms theunigram model.This is reflectedin thefactthatwewere

ableto bringdown theminimum cost N ¢ � �Z£ by 7%from thatof theunigrammodelasshown in thesamefigure.

Having found thebestperformingvaluesof variousparameters, we now ran thesystemon the testsetwith

theparameters setto thebesttrainingvalues.Theperformanceof thesystemonthetestsetis shown in figure5.

Onceagain, we noticethattheALD model consistentlyoutperformstheunigrammodelresultingin a reduction

of about 4% in theminimum cost.

8.2 Topic Tracking

We usedthe multi-lingual TDT3 corpus in our trackingexperiments. The generalEnglishunigram model is

derived from about40,000 storiesin theTDT2 corpus. We usedmanual transcriptionsandmachinetranslations

to English wherever necessary. Therewere38 topicsto track andwe provided oneEnglishtraining story per
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Figure 5: Performanceof ALD modelon thetestset(Link detectiontask)

topic ( � n �ª} ). Thetopic modelof eachtopic is computedfrom thesingletrainingstoryandremains static(no

adaptation is used)during theentirerun. Weusedthebestparametersobtainedfrom trainingin thelink detection

taskin our runsof unigramandALD models.

Figure6 comparesthe performanceof the ALD modelwith that of the unigram model. We noticetrends

similar to the link detectiontask. The minimum costof the ALD model is about 6.4%lower thanthat of the

unigrammodel. In bothfigures5 and6, we notethat theALD DET curve dominatestheunigramcurve,soit’s

evenbetterthanreducing theminimumcost:falsealarmrateis reduced atall missrates.

8.3 Comparison to state-of-t he-ar t TDT systems

The experimentswe have performedon the link detectiontask do not correspondto any official conditions,

but the trackingrun does correspond to the standard evaluation conditions of TDT 2001. The bestsystemin

that evaluation wasLimsi (Lo andGauvain , 2001) which achieved a minimum costof 0.0959 (comparedto

theunigramcostof 0.2498andALD minimum costof 0.2339). We notethat thestate-of-the-artTDT systems

like Limsi (Lo andGauvain , 2001) andRelevanceModels (Lavrenko et al., 2002) typically rely on elaborate
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Figure 6: Performanceof ALD modelonTrackingtask

boostingtechniquessuchasdocumentexpansionandunsupervisedadaptation while employing unigrammodel

astheir coretechnology.

The goal of the presentwork is to demonstratethat incorporating local dependencieswithin the language

modeling framework improveseffectiveness. Hencewe have usedthe unigram modelas our baselinein all

our runs. Although theperformanceof our systemis well shortof thestate-of-the-artsystems,we believe our

model is a contribution at a fundamentallevel, andit canbeeasilyextended to accommodateseveralboosting

techniquesusedin thestate-of-the-art systems.

9 Conc lusions and Future work

In this work, we have presenteda new approachof modelinga documentby capturing local dependenciesin

documentsadaptively through maximum spanningtrees.Although this approachis built towards addressinga

specificTDT task,webelievethatthegeneralityof themodelpermitsoneto applyit to any text classificationor

retrieval task.

Ourexperimentsshow thattheALD modeloutperformsthebaselineunigrammodelondifferentdatasetsand

ontwo different TDT tasks.To thebestof ourknowledge,thisis theonlyprobabilisticmodelthatperformsbetter

thanunigrammodelusingstatisticsfrom thedocumentalone.As such,wethink themostimportantcontribution

of this studyis theevidence we have providedthattheperformanceof theexisting IR systemscanbeimproved

by employing moresophisticatedlanguagemodelsthat capturepositionalandothersyntacticinformation in

documents.

As part of our future work, we would like to test the performance of our modelon otherIR taskssuchas

ad-hoc retrieval. We alsoenvision building a queryor documentexpansiondevice usingtheALD model asthe

basicframework. Our hopeis that thenew expansion device maybetterother expansion models basedon the

unigramapproachsinceourbasicmodel outperforms theunigrammodel.
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