
PHASE TRANSITION 
 

SAT–problem 
The first problem that was shown to be NP–complete (Cook, 1971).  

The problem: Given a Boolean formula in Conjunctive Normal Form (CNF), does there exist a 

satisfying assignment? 

  3–SAT  NP–complete 

  n–SAT  NP–complete 

  2 SAT ∈ P–class 

Problem instances of many NP–complete problems can be partitioned into two classes: 

� instances of problems that are provably easy to solve, i.e. they have polynomial time 

solutions,  

� instances that are hard to solve, i.e. they have no polytime solutions.  

 

Thousands of NP–complete problems are known, all can be encoded as SAT problems (see the 

examples below). 

 

Example 1 
You are chief of protocol for the embassy ball. The crown prince instructs you either to invite 

Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king 

wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of 

the entire royal family? 

The problem is represented by the formula:  
(p OR ~q) AND (q OR r) AND (~r OR ~p) 

To satisfy the formula, p = true, q = true, r = false or 

  p = false, q = false, r = true. 

 

Example 2: Protein folding 
Proteins: biochemical molecules that make up cells, organs, organisms. 

Ribosome: read codes; link the amino acids to form proteins. 

Human body: can build 50000 proteins. 

Every protein has a special 3D structure → folding process. 



Folding: determines the shape and the function of the protein. 

Folding → SAT → NP–complete 

Not known why do they fold, and why on the way as they do. The Folding problem is not solved. 

Folding problem lies at the heart of several diseases: 

Alzheimer’s 

Mad cow 

Crantzfeld–Jacob 

 

Example 3: Planning and scheduling 
� Planning is the process of selecting and sequencing processes such that they achieve one or 

more goals and satisfy a set of domain constraints. 

� Scheduling is the process of selecting among alternative plans and assigning resources and 

time to the set of processes in the plan.  

The Planning and Scheduling problem exists in manufacturing systems, in publishing houses, 

universities, hospitals, airports, transportation companies, etc. It is NP-complete, i.e., it is 

impossible to find an optimal solution without the use of an essentially enumerative algorithm 

and the computation time increases exponentially with problem size.  

 

Example 4: Computer chip verification 

Because of their extreme complexity, computer chips (such as microprocessors) have been a 

particular target of practical formal verification research. Circuits can be verified by comparing 

their implementation (called gate-level) to their formal specifications. Such equivalence 

checking is widely used. This comparison problem solves the satisfiability problem so it is NP-

complete. Essentially, it checks all possible input configurations, so as a new "gate" is added, 

allowing an additional bit to enter the chip's circuit, the number of possible input configurations 

increases by a magnitude of 2 (exponential time). 

 

Example 5: Fiber optics routing 
Optical networking - sending data or voice traffic as light signals over fiber optics cables - is 

already the technology of choice in long-distance transport. Long-haul optical networks can 

carry terabits of data, divided into discrete “channels” based on light wavelengths, across long 

distances with startling speed and signal integrity. 



SOLUTION 
P – problem 

π – instance of the problem  

∃ π of P which cannot be solved in polynomial time ⇒ P∈NP. 

P∈NP ∀π cannot be solved in polynomial time. ≠>

Typically: NP problems are solved by trials, heuristics: branch and bound 

              backtracking 

 

Readings: 
1. Marc Mezard, Giorgio Parisi, Riccardo Zecchina. ANALYTIC AND ALGORITHMIC 

SOLUTION OF RANDOM SATISFIABILITY PROBLEMS. Science, June 27, 2002. 

2. B. Hayes. Can't get no satisfaction. American Scientist, 85(2):108-112, 1997.  

 

 

Figure 1 Phase change in 3–SAT. Satisfiable phase is on the left; unsatisfiable phase on the right. 

 
 

Graph connectivity 
 
Random graph 
Let G be a graph over N nodes and E edges. G is a random graph if G is formed by selecting E 

edges uniformly without replacement from the C2
N possible edges. 

 

Erdős, Rényi: 

If 
2

log NNE <  ⇒ probability(G connected) → 0, N → ∞ 



If 
2

log NNE >  ⇒ probability(G connected) → 1, N → ∞ 

 

Frank, Martel: 
Frank and Martel checked the results of Erdős and Rényi for moderate sized graphs. They 

generated random graphs with different number of nodes N. For every N they generated 1000 

graphs at random. They plotted the proportion of 1000 graphs which were connected against 

NN
E

log
 for various E. They noted that there is a point where all curves intersected each other. 

The point is at 
NN

E
log

 ≈ 0.55. This matches the results of Erdős and Rényi. 
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Figure 2 Graph connectivity phase transition 

 
 
The Phase transition for Hamiltonian Cycle 
The Hamiltonian Cycle Problem is to decide whether or not there is a Hamiltonian Cycle in a 

given graph.  
 

Pósa (1976): 

If E = cN logN, ⇒ probability(G has a Hamiltonian cycle) → 1, if N → ∞ and c is sufficiently 

large. 



The proportion of graphs, which contain Hamiltonian Cycles, is plotted against 
NN

E
log

 for 

various E. Examination of the curves indicates that the crossover point occur at 7.0
log

≈
NN

E
. 
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Figure 3 The Hamiltonian Cycle phase transition 

 
 
A phase transition is a place where a system undergoes a sudden change of state. In NP-Hard 

problems we are interested in the place where randomly generated problem instances transit from 

the state of “most instances have solutions” to ”most instances have no solution”. In most cases 

there is a problem size independent constraint parameter which indicates how constrained the 

problem is. 

Phase transitions are typically shown by plotting the proportion of solvable problems with 

respect to the constraint parameter. A characteristic of phase transitions is that as the problem 

size increases, the curves become sharper; that is, when plotted against a constraint parameter, 

the transition occurs in a shorter interval of this parameter. In many cases a constraint parameter 

can be found such that all of the curves for different problem sizes intersect in the same place; 

this is called the crossover point. 



Constraint parameter K in HC problem for random graph G: 
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Figure 4 Typical plot for phase transition: sudd
K

en change from one state to another. 



 
Catastrophy Theory 
It is concerned with using continuous functions to describe phase transitions. 

René Thorn: 7 catastrophy types → 2nd type: spike catastrophy <≡> phase transition  
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