
Vertex Cover (VC) 
Instance: Given an n-node undirected graph G(V,E) with 
node set V and edge set E; a positive integer k with k<=n. 
Question: Is there a subset W of V having size at most k and 
such that for every edge {u,v} in E at least one of u and v 
belongs to W? 

 

 
 

CLIQUE 
Instance: Given an n-node undirected graph G(V,E) with 
node set V and edge set E; a positive integer k with k<=n.  
Question: Does G contain a k-clique, i.e. a subset W of the 
nodes V such that W has size k and for each distinct pair of 
nodes u, v in W, {u,v} is an edge of G? 

 

 



Hamiltonian Path 
Instance: Given an n-node undirected graph G(V,E).  

Question: Is there a simple path of edges in G that contains 
every node in V, and thus contains exactly n-1 edges?  

 
 

 

Longest Path 
Instance: Given an n-node undirected graph G(V,E); nodes s 
and t in V; a positive integer k.  

Question: Is there a simple path between s and t in G that 
contains at least k edges?  

A simple path in a graph is just one without any repeated edges or 
vertices. 



Hamiltonian Cycle 
 An undirected graph has a Hamiltonian cycle if there exists a 

cycle in the graph which visits each vertex in the graph 
exactly once. 

Instance: Undirected graph G = (V,E).  

Question: Does G contain a Hamiltonian cycle?  

 

 

 

 

 

 
  

 

Longest Circuit 
Instance: Given an n-node undirected graph G(V,E); a 
positive integer k. 

Question: Does G contain a simple cycle containing at least k 
nodes? 
Comments: Special cases of this are the famous Travelling Salesman 
Problem and Hamiltonian Circuit Problem. The latter corresponds 
to the cases k = n; the former to the case with each graph edge being 
weighted and also having k = n. 

 
 
 



Independent Set 
Instance: Given an n-node undirected graph G(V,E); a 
positive integer k <= n.  

Question: Does G have an independent set of size at least k, 
i.e. a subset W of at least k nodes from V such that no pair of 
nodes in W is joined by an edge in E? 

 

 

Reduction 

 
Formally, NP-completeness is defined in terms of "reduction" which 
is just a complicated way of saying one problem is easier than 
another.  
 
We say that A is easier than B (A is reducible to B), and write A < B, 
if we can write down an algorithm for solving A that uses a small 
number of calls to a subroutine for B (with everything outside the 
subroutine calls being fast, polynomial time). There are several 
minor variations of this definition depending on the detailed 
meaning of "small" -- it may be a polynomial number of calls, a 
fixed constant number, or just one call. It is possible for the 
algorithms for A to be slower than those for B, even though A < B. 
 
 



How to prove NP-completeness in practice 
 
 

Most proofs of NP-completeness are based on the observation that if 
A < B and B < C, then A < C. 
As a consequence of this observation, if A is NP-complete, B is in 
NP, and A < B, B is NP-complete. In practice that's how we prove 
NP-completeness: We start with one specific problem that we prove 
NP-complete, and we then prove that it's easier than lots of others 
which must therefore also be NP-complete. 
 
Example:  
 
Consider the Hamiltonian cycle problem. Does a given graph have a 
cycle visiting each vertex exactly once? Here's a solution, using 
longest path as a subroutine: 
 

for each edge (u,v) of G 
if there is a simple path of length n-1 from u to v 
return yes      // path + edge form a cycle 
return no 

 
This algorithm makes m calls to a longest path subroutine, and does 
O(m) work outside those subroutine calls, so it shows that 
Hamiltonian cycle < longest path.  
 
So e.g. since Hamiltonian cycle is known to be NP-complete, and 
Hamiltonian cycle < longest path, we can deduce that longest path is 
also NP-complete. 

 

 

 

 

 



PROVING NP–COMPLETENESS 
 

Given a problem Π. 

Question: Π∈P? 

    Π∈NP? 

Method 

1. Check: Π∈P? → Look for and find a polytime  

   algorithm ⇒ Π∈P–class. 

→ Ask someone else. 

If we are not able to find a polytime algorithm (and nobody 
else), then → 2. 

2. We suspect that Π∈NP. 

Check: Π∈NP? 

a) Verify that checking is polytime Π∈NP 
TRUE
⇒

(‘hint’ solution: choose at random & check whether it is a 
solution or not) 

b) Π can be reduced to a known NP–complete problem 
⇒ Π∈NP–complete class. 

! Reduction can be done in polytime. 

 

Write or formulate the known problem in terms of the 
unknown problem. Not vice versa! The unknown problem 
cannot be harder than the known problem. 



PROVE THAT THE MPS IS NP COMPLETE BY 
REDUCING PARTITION TO 2PS AND THEN 

REDUCING 2PS TO MPS 
 
Partition  
Instance: a multiset A and a measurement of the size of element in A 
s:A-->N;  
Question: can A be partitioned into subsets A0 and A1 such that the 
sum over elements a in A0 of s(a) is equal to the sum over element a 
in A1 of s(a)? (That is: can A be partitioned into equally sized 
subsets?)  
Multi-processor scheduling (mPS)  
Instance: A multiset A of tasks, a measurement of the time required 
for each task l: A-->N, a deadline (real number) D;  
Question: is there a partition of A into m disjoint sets such that the 
total time (sum of l(a)) for every element in a partition is always at 
most D?  
Two Processor Scheduling (2PS) Same as mPS, with m=2. 

 
Theorem: 2PS is NP complete  
Proof: The problem is clearly in NP, since it is easy to verify that the 
total time for the tasks in each of two partitions is at most D, given 
the partitions as "hints".  

Now, we show that Partition <= 2PS in order to conclude that the 
problem is NP complete.  

Let (A,s) be an instance of partition. Let D be half the sum of s(a) 
over all a's in a. Then (A,s,D) is an instance of 2PS.  

Now, if (A,s) is a "yes" instance of partition, then let A0 and A1 be 
the partition such that the sum of s(a)'s in each are the same. For 
these same partitions A0 and A1, their sum is less than or equal to 
(actually, equal to) D for this D. So, (A,s,D) is a "yes" instance of 
2PS.  

Conversely, if (A,s,D) is a "yes" instance of 2PS, then let A0, A1 be 
the schedules of tasks on processors 0 and 1. We have that the sum 
of the times s(a) over all a in A0 is at most D, and the same is true 



for the sums over A1. So the sum of these two sums is at most 2D 
which is the sum of all s(a)'s over all a in A. But this cannot exceed 
the sum of all values, so 2D is exactly the sum of all weights in A, 
which implies that the sum of weights in both A0 and A1 is exactly 
half of D. Consequently, these two sums are equal and so (A,s) is a 
"yes" instance of partition.  

In other words, partition reduces to 2PS, and so 2PS is NP complete.  

Now we show that mPS is NP complete, by reducing 2PS to it.  

Theorem: mPS is NP complete  
Proof: That mPS is in NP is obvious, by a similar argument to the 
above one: the "hint" is a schedule, the verification is just adding up 
times on each processor and comparing to D. 

Now, we reduce an arbitrary instance of 2PS, (A,s,D) to an instance 
of mPS.  

For instance (A,s,D), form an m-processor instance (A',s',D) by 
letting A' = A union {v} union ... union {v}, where:  

 m-2 copies of {v} are added in the unions  
 v is not in A  
 s'(v) = D, and s'(x) = s(x) for all x in A  

Now, if (A,s,D) is a "yes" instance, then the same partition of A that 
works in the two processor case will work in the m processor case, 
with the other m-2 processors being assigned {v}, with a cost of at 
most D for all processors.  

Conversely, any schedule for the m-processor case can be 
transformed into one for the two-processor case. Take any such 
schedule A1, ... Am. None of these sets can contain both v and x, for 
any non-v x, since the weight would then be s'(v) + s'(x) = D + s(x) > 
D. Furthermore, exactly m-2 of these must contain a {v}, since there 
are m-2 copies of v. So, let Ai and Aj be the two remaining sets (m-
(m-2)) which contain only non-v elements. By construction, these are 
precisely the elements in A, and so they form a "yes" instance to the 
2PS instance (A,s,D).  
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