
Polynomial transformations

a) From one language to another
Say we have two languages L1⊆ Σ1

*, and, L2⊆Σ2
*, which are

languages over the respective alphabets Σ1 and Σ2.

Then a polynomial transformation from L1 to L2 is a
function f: Σ1

*→Σ2
* that satisfies the following two criterion:

• 1. There exists a polynomial DTM that computes f.

• 2. For ∀x∈Σ1
*, x∈L1 if and only if f(x)∈L2.

Notation: “L1 transforms to L2”, L1~L2, L1∝L2

THEOREM 1

If L1∝L2 then L2∈P implies that L1∈P and equivalently that
L1∉P implies that L2∉P.

PROOF

The proof of this theorem rests on the fact that if there exists
a DTM, M1 that can recognise L2 in polynomial time, as well
as a DTM, M2 that computes the polynomial transformation
from L1 to L2 then we can simply combine M1 and M2 to
make a DTM M3 that can recognise L1 in polynomial time.

b) From one decision problem to another
We have two decision problems Π1 and Π2.

Then a polynomial transformation is a function f: Π1→Π2
that satisfies the following two criterion:

1. f is computable in polynomial time.

2. For ∀I∈Π1, I∈YΠ1 if and only if f(I)∈ YΠ2.

THEOREM 2

Polynomial transformation is transitive:

L1~L2 ∧ L2~L3 ⇒ L1~L3

PROOF

f1: Σ1
*→Σ2

* ∧ f2: Σ2
*→Σ3

* then

f(x) = f2(f1(x)) = f1 ° f2(x): Σ1
*→Σ3

*

− P problems form one class; they are equivalent under
polynomial transformation.

− NP problems form another class; they are equivalent
under polynomial transformation.

NP-completeness

A language L is said to be NP-complete if L∈NP and for all
other problems L’∈NP, it is the case that L’∝L.

A decision problem, Π is NP-complete if the corresponding
language L[Π, e] is NP-complete for some encoding scheme
e.

THEOREM

If L1 and L2 belong to NP, L1is NP–complete, and L1~L2, then
L2 is NP–complete.

PROOF

Since L2∈NP, all we need to do is show that, for every
L’∈NP, L’~L2. Consider any L’∈NP. Since L1 is NP–
complete, it must be the case that L’~L1. The transitivity of ~
and the fact that L1~L2, then imply L’~L2.

The same will hold true for decision problems.

NP-complete problems are the hardest decision problems in
the NP class. If the hardest problems in NP could be
transformed in polynomial time into a problem in P, then all
of the problems in NP would be in P and so then P = NP. To
date no NP-complete problem has been transformed into a
problem in P and therefore the majority of computer
scientists believe that NP ≠ P.

Proving NP–completeness
If we just have one example of an NP-complete decision
problem Π, then we can use the existence of a polynomial
transformation of Π to another decision problem Π’ to be a
proof that Π’ is also NP-complete.

To prove that Π’ is NP–complete show that:

1. Π’∈NP, and

2. some known NP–complete problem Π transforms to Π’.

The problem of satisfiability: SAT
Satisfiability of first order logical clauses in conjunctive
normal form CNF.

U = {u1, u2, ... , un } set of Boolean variables.

Truth assignment function t: U →{T, F}.

For each u∈U we say that both u and its negation u are
literals over the set of variables U. u is defined such that if
t(u) = T then t(u) = F, otherwise t(u) = T.

A clause over U is a set of literals over U, such as {u1, 3u , u8},
each of which consists of the disjunction of some set of
literals over U, and satisfied by a truth assignment if and
only if at least one of its member is true under that truth
assignment.

A collection C of clauses over U is satisfiable iff there exists
some truth assignment for U that simultaneously satisfies all
the clauses in C. → satisfying truth assignment

The Variables

• Q[i,qk] where i runs from 0 to p(n) and qk runs through all
states of M

• H[i,j] where i runs from 0 to p(n) and j runs from -p(n)
through p(n)+1

• S[i,j,sk] where i runs from 0 to p(n), j runs from -p(n) through
p(n)+1, and sk runs through all symbols of T (tape symbols)

The Meaning of the Variables

• Q[i,qj] means that at time i, M is in state qj
• H[i,j] means that at time i, M is scanning tape square j. Note

that in p(n) transitions, the read-write head can move at most
distance p(n) from its starting point.

• S[i,j,sk] means that at time i, the contents of tape square j is sk.

Clause Groups

• G1 - Guarantee that at each time i, M is in one and only one
state

• G2 - Guarantee that at each time i, M is scanning one and only
one tape square

• G3 - Guarantee that at each time i, there is one and only one
symbol in each tape square of the used tape

• G4 - Guarantee that the machine starts in q0 with x properly
positioned on the tape and the read-write head properly
positioned.

• G5 - Guarantee that by time p(n) M has entered qy.
• G6 - Guarantee that the transitions are applied properly

Group G1
• For each time i, add the clause {Q[i,q1],Q[i,q2], … , Q[i,qt]} where t is the

number of states in Q.
• For each time i, add the set of clauses {Q[i,qk],Q[i,qj]} where k and j, taken

together run through all pairs of states of Q. If Q has t states then t(t+1)/2
clauses are required for each time i.

The first part guarantees that at each time i, M is in at least one state. The second
part (with the paired barred variables) guarantees that M is not in more than one
state at time i. The time i runs from 0 through p(n).

Group G2

• For each time i, add the clause: {H[i,-p(n)],H[i,-p(n)+1],…,H[i,p(n)+1]}
• For each time i, let j and k run through all possible pairs of tape squares

from -p(n) to p(n)+1. For each pair (j,k), and each time i, add the clause
{H[i,j],H[i,k]}.

The first clause says that M must be scanning at least one tape square at every time
i. The second set of clauses says that M cannot be scanning more than one tape
square at any given time i.

Group G3

• Let i run through all times from 0 to p(n) and j run through all tape squares
from -p(n) through p(n)+1. (There are p(n)*2(p(n)+1) combinations.

• For each (i,j) add {S[i,j,s0],S[i,j,s1], … ,S[i,j,sk]}, where s0,s1, … ,sk run
through all tape symbols in T.

• Let l and m run through all pairs of tape symbols. If there are k tape
symbols, then there are k(k+1)/2 pairs.

• For each combination (i,j) and each pair (l,m), add the following clause
 {S[i,j,l],S[i,j,m]}

G3 Clauses model the behavior of the tape. The first set of clauses guarantees that
at any time i, each tape square contains at least one tape symbol. We are concerned
only about squares numbered from -p(n) through p(n)+1. The second set of clauses
guarantees that at any time i, no tape square contains more than one tape symbol.

Group G4
Add {Q[0,q0]} :we start in state 0.
Add {H[0,1]} : the read-write head starts with square 1.
Add {S[0,1,x1]}, {S[0,1,x2]}, … ,{S[0,n,xn]} : the input string is on the tape in
the correct position at time 0.
Add {S[0,0,b]}
Add {S[0,n+1,b]}, {S[0,n+2,b]}, … , {S[0,p(n)+1,b]}
Add {S[0,-1,b]}, {S[0,-2,b]}, … , {S[0,-p(n),b]}

The final sets of clauses guarantee that at time 0, the rest of the tape is blank.

Group G5
• Add {Q[p(n),qy]}

Once we enter state qy, no further transitions are allowed. This clause guarantees
that we have entered state qy either at some time prior to p(n) or at time p(n).
Entering qy causes M to accept its input.

Group G6

• Let (qa,sb,qc,sd,e) be an element of δ, where e is an element of {L,R}.
• We need to model the following logical statement in CNF form: If the

current time is i and M is in state qa and X is scanning tape square j and tape
square j contains symbol sb, then at time i+1, MX will be in state qb, tape
square j will contain sd and MX will be scanning either square j+1 or j-1
depending on e.

• If P then Q is logically equivalent to ~P OR Q.
• Assume e=L, then using the variables we get: ~(Q[i,qa] AND H[i,j] AND

S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j+1] AND S[i+1,j,sd])
• For e=R, ~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j-

1] AND S[i+1,j,sd])
Deriving CNF Form

• ~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j+1] AND
S[i+1,j,sd])

• DeMorgan’s Law: (Q[i,qa] OR H[i,j] OR S[i,j,sb]) OR (Q[i+1,qb] AND
H[i+1,j+1] AND S[i+1,j,sd])

• Apply Distributive Law to obtain Three Clauses
Final Group

e=L
{Q[i,qa], H[i,j], S[i,j,sb], Q[i+1,qb]}
{Q[i,qa], H[i,j], S[i,j,sb], H[i+1,j+1]}
 {Q[i,qa], H[i,j], S[i,j,sb], S[i+1,j,sd]}

e=R
{Q[i,qa], H[i,j], S[i,j,sb], Q[i+1,qb]}
{Q[i,qa], H[i,j], S[i,j,sb], H[i+1,j-1]}
 {Q[i,qa], H[i,j], S[i,j,sb], S[i+1,j,sd]}

• For each element of δ, add one three-clause group for each combination of

time i, and tape square j.
• For each element of δ, we generate 3*p(n)*2(p(n)+1) clauses.

The final Boolean Expression is E=G1∪G2∪G3∪G4∪G5∪G6

	THEOREM 1
	PROOF

	The Variables
	Q[i,qk] where i runs from 0 to p(n) and qk runs through all states of M
	H[i,j] where i runs from 0 to p(n) and j runs from -p(n) through p(n)+1
	S[i,j,sk] where i runs from 0 to p(n), j runs from -p(n) through p(n)+1, and sk runs through all symbols of T (tape symbols)

	The Meaning of the Variables
	Q[i,qj] means that at time i, M is in state qj
	H[i,j] means that at time i, M is scanning tape square j. Note that in p(n) transitions, the read-write head can move at most distance p(n) from its starting point.
	S[i,j,sk] means that at time i, the contents of tape square j is sk.

	Clause Groups
	G1 - Guarantee that at each time i, M is in one and only one state
	G2 - Guarantee that at each time i, M is scanning one and only one tape square
	G3 - Guarantee that at each time i, there is one and only one symbol in each tape square of the used tape
	G4 - Guarantee that the machine starts in q0 with x properly positioned on the tape and the read-write head properly positioned.
	G5 - Guarantee that by time p(n) M has entered qy.
	G6 - Guarantee that the transitions are applied properly

	Group G1
	For each time i, add the clause {Q[i,q1],Q[i,q2],
	For each time i, add the set of clauses {Q[i,qk],Q[i,qj]} where k and j, taken together run through all pairs of states of Q. If Q has t states then t(t+1)/2 clauses are required for each time i.
	The first part guarantees that at each time i, M is in at least one state. The second part (with the paired barred variables) guarantees that M is not in more than one state at time i. The time i runs from 0 through p(n).

	Group G2
	For each time i, add the clause: {H[i,-p\(n\)]�
	For each time i, let j and k run through all possible pairs of tape squares from -p(n) to p(n)+1. For each pair (j,k), and each time i, add the clause {H[i,j],H[i,k]}.
	The first clause says that M must be scanning at least one tape square at every time i. The second set of clauses says that M cannot be scanning more than one tape square at any given time i.

	Group G3
	Let i run through all times from 0 to p(n) and j run through all tape squares from -p(n) through p(n)+1. (There are p(n)*2(p(n)+1) combinations.
	For each \(i,j\) add {S[i,j,s0],S[i,j,s1], … ,S�
	Let l and m run through all pairs of tape symbols. If there are k tape symbols, then there are k(k+1)/2 pairs.
	For each combination (i,j) and each pair (l,m), add the following clause
	{S[i,j,l],S[i,j,m]}
	G3 Clauses model the behavior of the tape. The first set of clauses guarantees that at any time i, each tape square contains at least one tape symbol. We are concerned only about squares numbered from -p(n) through p(n)+1. The second set of clauses g

	Group G4
	Add {Q[0,q0]} :we start in state 0.
	Add {H[0,1]} : the read-write head starts with square 1.
	Add {S[0,1,x1]}, {S[0,1,x2]}, … ,{S[0,n,xn]} : th�
	Add {S[0,0,b]}
	Add {S[0,n+1,b]}, {S[0,n+2,b]}, … , {S[0,p\(n\)�
	Add {S[0,-1,b]}, {S[0,-2,b]}, … , {S[0,-p\(n\),�

	Group G5
	Add {Q[p(n),qy]}
	Once we enter state qy, no further transitions are allowed. This clause guarantees that we have entered state qy either at some time prior to p(n) or at time p(n). Entering qy causes M to accept its input.

	Group G6
	Let (qa,sb,qc,sd,e) be an element of (, where e is an element of {L,R}.
	We need to model the following logical statement in CNF form: If the current time is i and M is in state qa and X is scanning tape square j and tape square j contains symbol sb, then at time i+1, MX will be in state qb, tape square j will contain sd and
	If P then Q is logically equivalent to ~P OR Q.
	Assume e=L, then using the variables we get: ~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j+1] AND S[i+1,j,sd])
	For e=R, ~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j-1] AND S[i+1,j,sd])

	Deriving CNF Form
	~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j+1] AND S[i+1,j,sd])
	DeMorgan’s Law: \(Q[i,qa] OR H[i,j] OR S[i,j,sb]
	Apply Distributive Law to obtain Three Clauses

	Final Group
	e=L
	{Q[i,qa], H[i,j], S[i,j,sb], Q[i+1,qb]}
	{Q[i,qa], H[i,j], S[i,j,sb], H[i+1,j+1]}
	{Q[i,qa], H[i,j], S[i,j,sb], S[i+1,j,sd]}
	e=R
	{Q[i,qa], H[i,j], S[i,j,sb], Q[i+1,qb]}
	{Q[i,qa], H[i,j], S[i,j,sb], H[i+1,j-1]}
	{Q[i,qa], H[i,j], S[i,j,sb], S[i+1,j,sd]}
	For each element of (, add one three-clause group for each combination of time i, and tape square j.
	For each element of (, we generate 3*p(n)*2(p(n)+1) clauses.
	The final Boolean Expression is E=G1(G2(G3(G4(G5(G6

