
Polynomial transformations  
 

a) From one language to another 
Say we have two languages L1⊆ Σ1

*, and, L2⊆Σ2
*, which are 

languages over the respective alphabets Σ1 and Σ2.  

Then a polynomial transformation from L1 to L2 is a 
function f: Σ1

*→Σ2
* that satisfies the following two criterion:  

 

• 1. There exists a polynomial DTM that computes f.  

• 2. For ∀x∈Σ1
*, x∈L1 if and only if f(x)∈L2.  

 
Notation: “L1 transforms to L2”, L1~L2, L1∝L2 

 

 

THEOREM 1 
 

If L1∝L2 then L2∈P implies that L1∈P and equivalently that 
L1∉P implies that L2∉P. 
 
PROOF 
 

The proof of this theorem rests on the fact that if there exists 
a DTM, M1 that can recognise L2 in polynomial time, as well 
as a DTM, M2 that computes the polynomial transformation 
from L1 to L2 then we can simply combine M1 and M2 to 
make a DTM M3 that can recognise L1 in polynomial time. 



b) From one decision problem to another 
We have two decision problems Π1 and Π2.  

Then a polynomial transformation is a function f: Π1→Π2 
that satisfies the following two criterion:  

1. f is computable in polynomial time.  

2. For ∀I∈Π1, I∈YΠ1 if and only if f(I)∈ YΠ2. 

 

THEOREM 2 

Polynomial transformation is transitive: 

L1~L2 ∧ L2~L3 ⇒ L1~L3 

PROOF 

f1: Σ1
*→Σ2

* ∧ f2: Σ2
*→Σ3

*  then 

f(x) = f2(f1(x)) = f1 ° f2(x): Σ1
*→Σ3

*   

 

 

− P problems form one class; they are equivalent under 
polynomial transformation. 

− NP problems form another class; they are equivalent 
under polynomial transformation. 



NP-completeness 
 

A language L is said to be NP-complete if L∈NP and for all 
other problems L’∈NP, it is the case that L’∝L. 
 

A decision problem, Π is NP-complete if the corresponding 
language L[Π, e] is NP-complete for some encoding scheme 
e.  
 

THEOREM 

If L1 and L2 belong to NP, L1is NP–complete, and L1~L2, then 
L2 is NP–complete. 

PROOF 

Since L2∈NP, all we need to do is show that, for every 
L’∈NP, L’~L2. Consider any L’∈NP. Since L1 is NP–
complete, it must be the case that L’~L1. The transitivity of ~ 
and the fact that L1~L2, then imply L’~L2. 

 

The same will hold true for decision problems. 

 

NP-complete problems are the hardest decision problems in 
the NP class. If the hardest problems in NP could be 
transformed in polynomial time into a problem in P, then all 
of the problems in NP would be in P and so then P = NP. To 
date no NP-complete problem has been transformed into a 
problem in P and therefore the majority of computer 
scientists believe that NP ≠ P. 



Proving NP–completeness 
If we just have one example of an NP-complete decision 
problem Π, then we can use the existence of a polynomial 
transformation of Π to another decision problem Π’ to be a 
proof that Π’ is also NP-complete. 

To prove that Π’ is NP–complete show that: 

1.   Π’∈NP, and 

2.   some known NP–complete problem Π transforms to Π’. 

 

The problem of satisfiability: SAT 
Satisfiability of first order logical clauses in conjunctive 
normal form CNF. 

U = {u1, u2, ... , un } set of Boolean variables. 

Truth assignment function t: U →{T, F}. 

For each u∈U we say that both u and its negation u  are 
literals over the set of variables U. u  is defined such that if 
t(u) = T then t(u ) = F, otherwise t(u ) = T.  

A clause over U is a set of literals over U, such as {u1, 3u , u8}, 
each of which consists of the disjunction of some set of 
literals over U, and satisfied by a truth assignment if and 
only if at least one of its member is true under that truth 
assignment. 
 

A collection C of clauses over U is satisfiable iff there exists 
some truth assignment for U that simultaneously satisfies all 
the clauses in C. → satisfying truth assignment 



The Variables 
 
 

• Q[i,qk] where i runs from 0 to p(n) and qk runs through all 
states of M  

• H[i,j] where i runs from 0 to p(n) and j runs from -p(n) 
through p(n)+1  

• S[i,j,sk] where i runs from 0 to p(n), j runs from -p(n) through 
p(n)+1, and sk runs through all symbols of T (tape symbols) 

 
 
 
 

The Meaning of the Variables 
 
 

• Q[i,qj] means that at time i, M is in state qj  
• H[i,j] means that at time i, M is scanning tape square j. Note 

that in p(n) transitions, the read-write head can move at most 
distance p(n) from its starting point.  

• S[i,j,sk] means that at time i, the contents of tape square j is sk. 
 
 
 

Clause Groups 
 
 

• G1 - Guarantee that at each time i, M is in one and only one 
state  

• G2 - Guarantee that at each time i, M is scanning one and only 
one tape square  

• G3 - Guarantee that at each time i, there is one and only one 
symbol in each tape square of the used tape 

• G4 - Guarantee that the machine starts in q0 with x properly 
positioned on the tape and the read-write head properly 
positioned.  

• G5 - Guarantee that by time p(n) M has entered qy.  
• G6 - Guarantee that the transitions are applied properly 



Group G1 
• For each time i, add the clause {Q[i,q1],Q[i,q2], … , Q[i,qt]} where t is the 

number of states in Q.  
• For each time i, add the set of clauses {Q[i,qk],Q[i,qj]} where k and j, taken 

together run through all pairs of states of Q. If Q has t states then t(t+1)/2 
clauses are required for each time i. 

The first part guarantees that at each time i, M is in at least one state. The second 
part (with the paired barred variables) guarantees that M is not in more than one 
state at time i. The time i runs from 0 through p(n). 
 
Group G2 

• For each time i, add the clause: {H[i,-p(n)],H[i,-p(n)+1],…,H[i,p(n)+1]}  
• For each time i, let j and k run through all possible pairs of tape squares 

from -p(n) to p(n)+1. For each pair (j,k), and each time i, add the clause 
{H[i,j],H[i,k]}. 

The first clause says that M must be scanning at least one tape square at every time 
i. The second set of clauses says that M cannot be scanning more than one tape 
square at any given time i. 
 
Group G3 

• Let i run through all times from 0 to p(n) and j run through all tape squares 
from -p(n) through p(n)+1. (There are p(n)*2(p(n)+1) combinations.  

• For each (i,j) add {S[i,j,s0],S[i,j,s1], … ,S[i,j,sk]}, where s0,s1, … ,sk run 
through all tape symbols in T. 

• Let l and m run through all pairs of tape symbols. If there are k tape 
symbols, then there are k(k+1)/2 pairs.  

• For each combination (i,j) and each pair (l,m), add the following clause  
     {S[ i,j,l],S[i,j,m]} 

G3 Clauses model the behavior of the tape. The first set of clauses guarantees that 
at any time i, each tape square contains at least one tape symbol. We are concerned 
only about squares numbered from -p(n) through p(n)+1. The second set of clauses 
guarantees that at any time i, no tape square contains more than one tape symbol. 
 

Group G4 
Add {Q[0,q0]} :we start in state 0. 
Add {H[0,1]} : the read-write head starts with square 1. 
Add {S[0,1,x1]}, {S[0,1,x2]}, … ,{S[0,n,xn]} : the input string is on the tape in 
the correct position at time 0. 
Add {S[0,0,b]}  
Add {S[0,n+1,b]}, {S[0,n+2,b]}, … , {S[0,p(n)+1,b]}  
Add {S[0,-1,b]}, {S[0,-2,b]}, … , {S[0,-p(n),b]} 

The final sets of clauses guarantee that at time 0, the rest of the tape is blank. 
 



Group G5 
• Add {Q[p(n),qy]}  

Once we enter state qy, no further transitions are allowed. This clause guarantees 
that we have entered state qy either at some time prior to p(n) or at time p(n). 
Entering qy causes M to accept its input. 
 
Group G6 

• Let (qa,sb,qc,sd,e) be an element of δ, where e is an element of {L,R}.  
• We need to model the following logical statement in CNF form: If the 

current time is i and M is in state qa and X is scanning tape square j and tape 
square j contains symbol sb, then at time i+1, MX will be in state qb, tape 
square j will contain sd and MX will be scanning either square j+1 or j-1 
depending on e. 

• If P then Q is logically equivalent to ~P OR Q.  
• Assume e=L, then using the variables we get: ~(Q[i,qa] AND H[i,j] AND 

S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j+1] AND S[i+1,j,sd])  
• For e=R, ~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j-

1] AND S[i+1,j,sd]) 
Deriving CNF Form 

• ~(Q[i,qa] AND H[i,j] AND S[i,j,sb]) OR (Q[i+1,qb] AND H[i+1,j+1] AND 
S[i+1,j,sd])  

• DeMorgan’s Law: (Q[i,qa] OR H[i,j] OR S[i,j,sb]) OR (Q[i+1,qb] AND 
H[i+1,j+1] AND S[i+1,j,sd])  

• Apply Distributive Law to obtain Three Clauses 
Final Group 

e=L  
{Q[i,qa], H[i,j], S[i,j,sb], Q[i+1,qb]}  
{Q[i,qa], H[i,j], S[i,j,sb], H[i+1,j+1]} 
 {Q[i,qa], H[i,j], S[i,j,sb], S[i+1,j,sd]}  

e=R  
{Q[i,qa], H[i,j], S[i,j,sb], Q[i+1,qb]}  
{Q[i,qa], H[i,j], S[i,j,sb], H[i+1,j-1]} 
 {Q[i,qa], H[i,j], S[i,j,sb], S[i+1,j,sd]} 

 
• For each element of δ, add one three-clause group for each combination of 

time i, and tape square j.  
• For each element of δ, we generate 3*p(n)*2(p(n)+1) clauses. 

 
 
The final Boolean Expression is E=G1∪G2∪G3∪G4∪G5∪G6 
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