NONCOMPUTABLE PROBLEMS

Example 1: Halting Problem

<u>Program E</u>: able to read any program and halt after a finite time with the correct answer: either the given input program halts on all inputs or it does not.

```
procedure halt(P, x, result)
   begin
    Body of the halt routine.
    if ... then result := `Halts.`
    else result := `Does not halt.`
   end
procedure selfhalt(P, result)
   begin
    halt(p, p, answer)
    if answer = `Halt.` then
         result := `Halts on self.`
    else result := `Does not halt on self.`
   end
procedure contrary(p)
   begin
    selfhalt(p, answer)
    if answer = `Halts on self.` then
        while true do
             anwer := `x`
   end
```

Example 2: Functions

Χ	$F_1(X)$	$F_2(X)$	$F_3(X)$	•••	$F_i(X)$	•••	$F_e(X)$
1	1	1	2				1 + 1 = 2
2	2	4	4				4 + 1 = 5
3	3	9	6				6 + 1 = 7
•••	•••	•••					
i	F ₁ (i)	F ₂ (i)	F ₃ (i)		F _i (i)		$F_{i}(i) + 1$
•••							

Assume: we have the natural numbers in the table.

Assume: the table contains every function that can be considered on these numbers.

Question: F_e is a member of the table or not. Answer: NOT.

The set of functions that have positive integers for inputs and outputs is uncountable.

There exist functions, which cannot be computed algorithmically.

INTRACTABLE COMPUTATION

A computation is <u>intractable</u> if its execution time increases with increasing *n* faster than any polynomial.

Example 1: Towers of Hanoi

п	<i>t</i> (approximate)		
5	0.17 sec		
10	5.62 sec		
15	3.00 min		
30	68.23 days		
35	5.98 years		
55	6267840 years		
70	205385000000 years		

 $t = 5.49 \times 10^{-3} \times 2^{n}$

Example 2: Traveling Salesman Problem

Find the shortest route:

- Find all routes.
- Compute their length.
- Select the optimum one.

Number of cities = n, n > 2

$$S = \frac{1}{2}(n-1)!$$

S: number of different paths.