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Abstract.  In this paper we present a theoretical model for understanding the performance of LSI search and retrieval 
applications. Many models for understanding LSI have been proposed.  Ours is the first to study the values produced by 
LSI in the term dimension vectors.  The framework presented here is based on term co-occurrence data.  We show a 
strong correlation between second order term co-occurrence and the values produced by the SVD algorithm that forms 
the foundation for LSI.  We also present a mathematical proof that the SVD algorithm encapsulates term co-occurrence 
information.   

 
 

1 Introduction 
 

Latent Semantic Indexing (LSI) (Deerwester, et al., 1990) is a well-known text-mining algorithm.  LSI has 
been applied to a wide variety of learning tasks, such as search and retrieval (Deerwester, et al.), classification 
(Zelikovitz and Hirsh, 2001) and filtering (Dumais, 1994, 1995).  LSI is a vector space approach for modeling 
documents, and many have claimed that the technique brings out the ‘ latent’  semantics in a collection of 
documents (Deerwester, et al., 1990; Dumais, 1993). 

LSI is based on well known mathematical technique called Singular Value Decomposition (SVD).  
The algebraic foundation for Latent Semantic Indexing (LSI) was first described in (Deerwester, et al., 1990) 
and has been further discussed in (Berry, Dumais and O’Brien, 1995; Berry, Drmac, and Jessup, 1999).  
These papers describe the SVD process and interpret the resulting matrices in a geometric context.  The SVD, 
truncated to k dimensions, gives the best rank-k approximation to the original matrix.  In (Wiemer-Hastings, 
1999), Wiemer-Hastings shows that the power of LSI comes primarily from the SVD algorithm.   

Other researchers have proposed theoretical approaches to understanding LSI.  (Zha, 1998) 
describes LSI in terms of a subspace model and proposes a statistical test for choosing the optimal number of 
dimensions for a given collection.  (Story, 1996) discusses LSI’s relationship to statistical regression and 
Bayesian methods.  (Ding, 1999) constructs a statistical model for LSI using the cosine similarity measure.   

Although other researchers have explored the SVD algorithm to provide an understanding of SVD-
based information retrieval systems, to our knowledge, only Schütze has studied the values produced by SVD 
(Schütze, 1992).  We expand upon this work, showing here that SVD exploits higher order term co-
occurrence in a collection.  Our work provides insight into the origin of the values in the term-term matrix.  

This work provides a model for understanding LSI.  Our framework is based on the concept of 
term co-occurrences.  Term co-occurrence data is implicitly or explicitly used for almost every advanced 
application in textual data mining.   

This work is the first to study the values produced in the SVD term by dimension matrix and we 
have discovered a correlation between the performance of LSI and the values in this matrix.   Thus we have 
discovered the basis for the claim that is frequently made for LSI:  LSI emphasizes underlying semantic 
distinctions (latent semantics) while reducing noise in the data.  This is an important component in the 
theoretical foundation for LSI.    

In section 2 we present a simple example of higher order term co-occurrence in SVD.  In section 3 
we present our analysis of the values produced by SVD.   Section 4 presents a mathematical proof of term 
transitivity within SVD, previously reported in (Kontostathis and Pottenger, 2002b).   

 



 

2 Co-occurrence in LSI  – An Example 
 

The data for the following example is taken from (Deerwester, et al., 1990).  In that paper, the authors 
describe an example with 12 terms and 9 documents.  The term-document matrix is shown in table 1 and the 
corresponding term-term matrix is shown in table 2.  

The SVD process used by LSI decomposes the matrix into three matrices:  T, a term by dimension 
matrix, S a singular value matrix, and D, a document by dimension matrix.  The number of dimensions is the 
rank of the term by document matrix.  The original matrix can be obtained, through matrix multiplication of 
TSDT.  The reader is referred to (Deerwester, et al., 1990) for the T, S, and D matrices.  In the LSI system, the 
T, S and D matrices are truncated to k dimensions.  The purpose of dimensionality reduction is to reduce 
“noise”  in the term–term matrix, resulting in a richer word relationship structure that reveals latent semantics 
present in the collection.  After dimensionality reduction the term-term matrix can be re-computed using the 
formula TkSk(TkSk)

T.  The term-term matrix, after reduction to 2 dimensions, is shown in table 3. 
 

Table 1.  Deerwester Term by Document Matrix 

 
Table 2.  Deerwester Term by Term Matrix 

 
We will assume that the value in position (i,j) of the matrix represents the similarity between term i 

and term j in the collection.  As can be seen in table 3, user and human now have a value of .94, representing 
a strong similarity, where before the value was zero.  In fact, user and human is an example of second order 
co-occurrence.  The relationship between user and human comes from the transitive relation:  user co-occurs 
with interface and interface co-occurs with human.   

A closer look reveals a value of 0.15 in the relationship between trees and computer.   Looking at 
the co-occurrence path gives us an explanation as to why these terms received a positive (although weak) 

c1 c2 c3 c4 c5 m1 m2 m3 m4
human 1 0 0 1 0 0 0 0 0
interface 1 0 1 0 0 0 0 0 0
computer 1 1 0 0 0 0 0 0 0
user 0 1 1 0 1 0 0 0 0
system 0 1 1 2 0 0 0 0 0
response 0 1 0 0 1 0 0 0 0
time 0 1 0 0 1 0 0 0 0
EPS 0 0 1 1 0 0 0 0 0
Survey 0 1 0 0 0 0 0 0 1
trees 0 0 0 0 0 1 1 1 0
graph 0 0 0 0 0 0 1 1 1
minors 0 0 0 0 0 0 0 1 1
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human x 1 1 0 2 0 0 1 0 0 0 0
interface 1 x 1 1 1 0 0 1 0 0 0 0
computer 1 1 x 1 1 1 1 0 1 0 0 0
user 0 1 1 x 2 2 2 1 1 0 0 0
system 2 1 1 2 x 1 1 3 1 0 0 0
response 0 0 1 2 1 x 2 0 1 0 0 0
time 0 0 1 2 1 2 x 0 1 0 0 0
EPS 1 1 0 1 3 0 0 x 0 0 0 0
Survey 0 0 1 1 1 1 1 0 x 0 1 1
trees 0 0 0 0 0 0 0 0 0 x 2 1
graph 0 0 0 0 0 0 0 0 1 2 x 2
minors 0 0 0 0 0 0 0 0 1 1 2 x



 

similarity value.  From table 2, we see that trees co-occurs with graph, graph co-occurs with survey, and 
survey co-occurs with computer.  Hence the trees/computer relationship is an example of third order co-
occurrence.   In the next section we present correlation data that confirms the relationship between the term-
term matrix values and the performance of LSI. 

To completely understand the dynamics of the SVD process, a closer look at table 1 is warranted.  
We note the nine documents in the collection can be split into two subsets { C1-C5}  and { M1-M4} .  If the 
term survey did not appear in the { M1-M4}  subset, the subsets would be disjoint.  The data in table 4 was 
developed by changing the survey/m4 entry to 0 in table 1, computing the decomposition of this new matrix, 
truncating to two dimensions and deriving the associated term-term matrix. 

 
Table 3.  Deerwester Term by Term Matrix, Truncated to two dimensions 

 
Table 4.  Modified Deerwester Term by Term Matrix, Truncated to two dimensions 

 
 
Notice the segregation between the terms; all values between { trees, graph, minors}  subset and the rest of 

the terms have been reduced to zero.  In the section 4 we prove a theorem that explains this phenomena, 
showing, in all cases, that if there is no connectivity path between two terms, the resultant value in the term-
term matrix must be zero. 
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human 0.62 0.54 0.56 0.94 1.69 0.58 0.58 0.84 0.32 -0.32 -0.34 -0.25
interface 0.54 0.48 0.52 0.87 1.50 0.55 0.55 0.73 0.35 -0.20 -0.19 -0.14
computer 0.56 0.52 0.65 1.09 1.67 0.75 0.75 0.77 0.63 0.15 0.27 0.20
user 0.94 0.87 1.09 1.81 2.79 1.25 1.25 1.28 1.04 0.23 0.42 0.31
system 1.69 1.50 1.67 2.79 4.76 1.81 1.81 2.30 1.20 -0.47 -0.39 -0.28
response 0.58 0.55 0.75 1.25 1.81 0.89 0.89 0.80 0.82 0.38 0.56 0.41
time 0.58 0.55 0.75 1.25 1.81 0.89 0.89 0.80 0.82 0.38 0.56 0.41
EPS 0.84 0.73 0.77 1.28 2.30 0.80 0.80 1.13 0.46 -0.41 -0.43 -0.31
Survey 0.32 0.35 0.63 1.04 1.20 0.82 0.82 0.46 0.96 0.88 1.17 0.85
trees -0.32 -0.20 0.15 0.23 -0.47 0.38 0.38 -0.41 0.88 1.55 1.96 1.43
graph -0.34 -0.19 0.27 0.42 -0.39 0.56 0.56 -0.43 1.17 1.96 2.50 1.81
minors -0.25 -0.14 0.20 0.31 -0.28 0.41 0.41 -0.31 0.85 1.43 1.81 1.32
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human 0.56   0.50   0.60   1.01   1.62   0.66   0.66   0.76   0.45   -     -     -     
interface 0.50   0.45   0.53   0.90   1.45   0.59   0.59   0.68   0.40   -     -     -     
computer 0.60   0.53   0.64   1.08   1.74   0.71   0.71   0.81   0.48   -     -     -     
user 1.01   0.90   1.08   1.82   2.92   1.19   1.19   1.37   0.81   -     -     -     
system 1.62   1.45   1.74   2.92   4.70   1.91   1.91   2.20   1.30   -     -     -     
response 0.66   0.59   0.71   1.19   1.91   0.78   0.78   0.90   0.53   -     -     -     
time 0.66   0.59   0.71   1.19   1.91   0.78   0.78   0.90   0.53   -     -     -     
EPS 0.76   0.68   0.81   1.37   2.20   0.90   0.90   1.03   0.61   -     -     -     
Survey 0.45   0.40   0.48   0.81   1.30   0.53   0.53   0.61   0.36   -     -     -     
trees -     -     -     -     -     -     -     -     -     2.05   2.37   1.65   
graph -     -     -     -     -     -     -     -     -     2.37   2.74   1.91   
minors -     -     -     -     -     -     -     -     -     1.65   1.91   1.33   



 

3 Analysis of the LSI  Values 
 

In this section we expand upon the work in (Kontostathis and Pottenger, 2002b).  The results of our analysis 
show a strong correlation between the values produced by the SVD process and higher order term co-
occurrences.  In the conclusion we discuss the practical applications of this analytical study.     

We chose six collections for our study of the values produced by SVD.  These collections are 
described in Table 5.  These collections were chosen because they have query and relevance judgment sets 
that are readily available.  

 
Table 5.  Characteristics of collections used in study 

 

Figure 2.  LSI Performance for LISA and NPL 
 

The Parallel General Text Parser (PGTP) (Martin and Berry, 2001) was used to preprocess the text 
data, including creation and decomposition of the term document matrix.  For our experiments, we applied the 
log entropy weighting option and normalized the document vectors. 

We were interested in the distribution of values for both optimal and sub-optimal parameters for 
each collection.  In order to identify the most effective k (dimension truncation parameter) for LSI, we used 
the f-measure, a combination of precision and recall (van Rijsbergen, 1979), as a determining factor.  In our 
experiments we used a beta=1 for the f-measure parameter.  We explored possible values from k=10, 
incrementing by 5, up to k=200 for the smaller collections, values up to k=500 were used for the LISA and 
NPL collections.  For each value of k, precision and recall averages were identified for each rank from 10 to 
100 (incrementing by 10), and the resulting f-measure was calculated.  The results of these runs for selected 

Identifier Description
No. of 
Docs

No. of 
Terms

No. 
Queries

Optimal 
k

Values of k used in 
study

MED Medical Abstracts 1033 5831 30 40
10,25,40,75, 

100,125,150,200

CISI
Information Science 

Abstracts
1460 5143 76 40

10,25,40,75, 
100,125,150,200

CACM
Communications of the 

ACM Abstracts
3204 4863 52 70

10,25,50,70, 
100,125,150,200

CRAN Cranfield Collection 1398 3931 225 50
10,25,50,75, 

100,125,150,200

LISA
Library and Information 

Science Abstracts
6004 18429 35 165

10,50,100,150, 
165,200,300,500

NPL
Larger collection of very 

short documents
11429 6988 93 200

10,50,100,150, 
200,300,400,500
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values of k are summarized in figures 2 and 3.  Clearly MED has the best performance overall.  To choose the 
optimal k, we selected the smallest value that provided substantially similar performance as larger k values.  
For example, in the LISA collection k=165 was chosen as the optimum because the k values higher than 165 
provide only slighter better performance.  A smaller k is preferable to reduce the computational overhead of 
both the decomposition and the search and retrieval processing.  The optimal k was identified for each 
collection and is shown in table 5. 

Figure 3.  LSI Performance for Smaller Collections 

Figure 4.  Algorithm for data collection 
 

3.1 Methodology 
 

The algorithm used to collect the co-occurrence data appears in figure 4.  After we compute the SVD using 
the original term by document matrix, we calculate term-term similarities.  LSI provides two natural methods 
for describing term-term similarity.  First, the term-term matrix can be created using TkSk(TkSk)

T.  This 
approach results in values such as those shown in table 3.  Second, the term by dimension (TkSk) matrix can 
be used to compare terms using a vector distance measure, such as cosine similarity.  In this case, the cosine 
similarity is computed for each pair of rows in the TkSk matrix.  The computation results in a value in the 
range [-1, 1] for each pair of terms (i,j).   

After the term similarities are created, we need to determine the order of co-occurrence for each 
pair of terms.  The order of co-occurrence is computed by tracing the co-occurrence paths.  In figure 5 we 
present an example of this process.  In this small collection, terms A and B appear in document D1, terms B 

Create the term by document matrix 
Compute the SVD for the matrix 
For each pair of  terms (i,j) in the collection 

Compute the term-term matrix value for the (i,j) element after truncation to k dimensions 
Compute the cosine similarly value for the (i,j) element after truncation to k dimemsions 
Determine the ‘order of co-occurrence’  

If term i and term j appear in same document (co-occur), ‘order of co-occurrence’  = 1 
If term i and term j do not appear in same document, but i co-occurs with m,  

and m co-occurs with j, then ‘order of co-occurrence’  = 2 
(Higher orders of co-occurrence are computed in a similar fashion by induction on the number of 

intermediate terms) 
Summarize the data by range of values and order of co-occurrence 
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and C appear in document D2, and terms C and D occur in document D3.  If each term is considered a node in 
a graph, arcs can be drawn between the terms that appear in the same document.  Now we can assign order of 
co-occurrence as follows: nodes that are connected are considered first order pairs, nodes that can be reached 
with one intermediate hop are second order co-occurrences, nodes that can be reached with two intermediate 
hops are third order pairs, etc.  In general the order of co-occurrence is n + 1, where n is the number of hops 
needed to connect the nodes in the graph.  Note that some term pairs may not have a connecting path; the LSI 
term by term matrix for this situation is shown in table 4, the term by term entry will always be zero for terms 
that do not have a connectivity path. 
 

 

 
Figure 5.  Tracing order of co-occurrence 

 
 

3.2 Results 
 

The order of co-occurrence summary for the NPL collection is shown in table 6.  The values are expressed as 
a percentage of the total number of pairs of first, second and third order co-occurrences for each collection.  
The values in table 6 represent the distribution using the cosine similarity.  LSI performance is also shown.  

Table 7a shows the correlation coefficient for all collections.  There is a strong correlation between 
the percentage of second order negative values and LSI performance for all collections, with the correlations 
for MED appearing slightly weaker than the other collections.  There also appears to be a strong inverse 
correlation between the positive second and third order values and the performance of LSI.  In general the 
values for each order of co-occurrence/value pair appear to be consistent across all collections, with the 
exception of the third order negative values for CACM.  

A 
B 

B 
C 

C 
D 

D1 D3 D2 

1st order term co-occurrence { A,B} , { B,C} , { C,D}  
2nd order term co-occurrence { A,C} , { B,D}  
3rd order term co-occurrence { A,D}  

A B C D 



 

 
Table 6.  Distribution summary by sign and order of co-occurrence for NPL 

 
Table 7a and 7b.  Within Collection Correlation data 

 
The corresponding data using the term-term similarity as opposed to the cosine similarity is shown 

in table 7b.  In this data we observe consistent correlations for negative and zero values across all collections, 
but there are major variances in the correlations for the positive values. 

k=10 k=50 k=100 k=150 k=200 k=300 k=400 k=500
[-1.0,-.01] 1.4% 2.5% 3.0% 3.1% 3.1% 2.8% 2.2% 1.6%
(-.01,.01) 0.5% 1.7% 2.9% 4.1% 5.0% 6.7% 8.1% 9.4%
[.01, 1.0] 98.1% 95.7% 94.1% 92.8% 91.8% 90.5% 89.7% 89.0%

k=10 k=50 k=100 k=150 k=200 k=300 k=400 k=500
[-1.0,-.01] 14.0% 24.6% 28.2% 30.1% 31.2% 32.1% 32.2% 31.8%
(-.01,.01) 2.4% 6.7% 9.9% 12.4% 14.7% 18.9% 22.7% 26.4%
[.01, 1.0] 83.6% 68.6% 61.9% 57.5% 54.2% 49.0% 45.1% 41.7%

k=10 k=50 k=100 k=150 k=200 k=300 k=400 k=500
[-1.0,-.01] 44.6% 62.7% 66.9% 69.3% 70.0% 69.7% 68.3% 66.6%
(-.01,.01) 3.9% 8.8% 11.6% 13.5% 15.1% 18.1% 21.0% 23.6%
[.01, 1.0] 51.5% 28.5% 21.6% 17.2% 14.9% 12.2% 10.7% 9.8%

k=10 k=50 k=100 k=150 k=200 k=300 k=400 k=500
F-measure 0.08 0.13 0.15 0.15 0.16 0.17 0.17 0.18

2nd Order

3rd Order

LSI Performance Beta=1

1stOrder

1st 2nd 3rd 1st 2nd 3rd

[-1.0,-.01] 0.38 0.99 0.92 (-9999,-.001] 0.90 0.99 0.99
(-.01,.01) 0.88 0.89 0.93 (-.001,.001) -0.87 -0.99 -0.99
[.01, 1.0] -0.95 -0.98 -1.00 [.001, 9999) -0.90 -0.99 -0.99

[-1.0,-.01] 0.55 0.99 0.99 (-9999,-.001] 0.90 0.95 0.99
(-.01,.01) 0.79 0.77 0.84 (-.001,.001) -0.89 -0.95 -1.00
[.01, 1.0] -0.93 -0.92 -0.97 [.001, 9999) -0.89 -0.95 -0.97

[-1.0,-.01] 0.91 0.94 0.97 (-9999,-.001] 0.90 0.75 0.59
(-.01,.01) 0.77 0.76 0.78 (-.001,.001) -0.86 -0.73 -0.59
[.01, 1.0] -0.88 -0.88 -0.96 [.001, 9999) 0.81 -0.87 0.46

[-1.0,-.01] 0.79 0.93 0.99 (-9999,-.001] 0.89 0.76 0.72
(-.01,.01) 0.82 0.78 0.77 (-.001,.001) -0.87 -0.77 -0.72
[.01, 1.0] -0.92 -0.89 -0.96 [.001, 9999) 0.84 0.82 0.68

[-1.0,-.01] 0.71 0.76 0.80 (-9999,-.001] 0.86 0.88 0.82
(-.01,.01) 0.52 0.48 0.52 (-.001,.001) -0.96 -0.88 -0.82
[.01, 1.0] -0.68 -0.66 -0.74 [.001, 9999) 0.96 0.86 0.87

[-1.0,-.01] 0.99 0.98 -0.21 (-9999,-.001] 0.98 0.91 0.93
(-.01,.01) 0.92 0.93 0.93 (-.001,.001) -0.95 -0.88 -0.92
[.01, 1.0] -0.96 -0.96 -0.94 [.001, 9999) 0.94 0.62 0.90

LISA Cosine

Correlation Data for Cosine Similarity Correlation Data for Term-Term Similarity

CRAN TermTerm

CISI Cosine

CRAN Cosine

Correlation Coefficients

NPL TermTerm

LISA TermTerm

Correlation Coefficients

NPL Cosine

MED Cosine

CACM Cosine

CISI TermTerm

MED TermTerm

CACM TermTerm



 

 
Table 8a and 8b.  Correlation data by value distribution only 

 

 
 
 Table 8a shows the values when the correlation coefficient is computed for selected ranges of the 

cosine similarity, without taking order of co-occurrence into account.  Again we note strong correlations for 
all collections for value ranges (-.2,-1], (-.1,-.01] and (-.01,.01).   

Table 8b shows the values when the correlation coefficient is computed for selected ranges of the 
term-term similarity, without taking order of co-occurrence into account.  These results are more difficult to 
interpret.  We see some similarity in the (-.2,-1], (-.1,-.01] and (-.01,.01) ranges for all collections except 
MED.  The positive values do not lend weight to any conclusion.  NPL and CACM show strong correlations 
for some ranges, while the other collections report weaker correlations.   

Our next step was to determine if these correlations existed when the distributions and LSI 
performance were compared across collections.  Two studies were done, one holding k constant at k=100 and 
the second using the optimal k (identified in table 5) for each collection.  Once again we looked at both the 
cosine and the term term similarities.  Table 9 shows the value distribution for the cosine similarity for k=100.  
The correlation coefficients for the cross collection studies are shown in table 10.  Note the  correlation 
between the second order negative and zero values and the LSI performance, when k=100 is used.   These 
correlations are not as strong as the correlations obtained when comparing different values of k within a single 
collection, but finding any similarity across these widely disparate collections is noteworthy.  The cross 
collection correlation coefficients for optimal k values (as defined in table 5) are also shown in table 10.   
There is little evidence that the distribution of values has an impact on determining the optimal value of k, but 

Similarity NPL LISA CISI CRAN MED CACM
(-.3,-.2] -0.74 -0.54 -0.09 -0.28 -0.39 0.76
(-.2,-.1] 0.97 0.96 0.86 0.89 0.92 0.82
(-.1,-.01] 0.78 0.77 0.78 0.76 0.81 0.75
(-.01,.01) 0.98 0.98 0.88 0.90 0.93 0.83
[.01,.1] -0.36 -0.14 0.25 0.29 -0.21 0.91
(.1,.2] -0.85 -0.81 -0.59 -0.64 -0.77 0.36
(.2,.3] -0.98 -0.99 -0.85 -0.90 -0.92 -0.17
(.3,.4] -0.99 -0.99 -0.97 -0.99 -0.98 -0.48
(.4,.5] -0.98 -0.97 -1.00 -1.00 -1.00 -0.69
(.5,.6] -0.96 -0.96 -0.98 -0.97 -0.99 -0.87

Correlation Coefficients for Cosine Similarity 

Similarity NPL LISA CISI CRAN MED CACM
(-.02,-.01] 0.87 0.71 0.73 0.75 0.47 0.92
(-.01,-.001] 1.00 0.96 0.73 0.76 0.40 0.91
(-.001,.001) -0.99 -0.95 -0.73 -0.74 -0.41 -0.89
[.001,.01] -0.99 -0.95 -0.66 -0.93 0.41 0.22
(.01,.02] 0.35 0.93 0.72 0.82 0.50 0.92
(.02,.03] 0.52 0.79 0.69 0.80 0.44 0.93
(.03,.04] 0.95 0.72 0.73 0.78 0.44 0.93
(.04,.05] 0.87 0.69 0.71 0.74 0.45 0.94
(.05,.06] 0.86 0.69 0.72 0.75 0.46 0.94
(.06,.07] 0.84 0.68 0.73 0.78 0.49 0.95
(.07,.08] 0.82 0.68 0.66 0.75 0.51 0.96
(.08,.09] 0.83 0.70 0.69 0.80 0.52 0.95
(.09,.1) 0.84 0.71 0.69 0.77 0.55 0.96

[.1, 9999] 0.87 0.81 0.73 0.84 0.64 0.97

Correlation Coefficients for TermTerm Similarity 



 

there is a correlation between the distribution of cosine similarity values and the retrieval performance at 
k=100. 

 
Table 9.  Cross collection distribution by sign and order of co-occurrence, cosine similarity, k=100 

 
Table 10a and 10b.  Cross collection correlation coefficients 

 

 

3.3 Discussion 
 
Our results show strong correlations between higher orders of co-occurrence in the SVD algorithm and the 
performance of LSI, a search and retrieval algorithm, particularly when the cosine similarity metric is used.  
Higher order co-occurrences play a key role in the effectiveness of many systems used for text mining.  We 
detour briefly to describe recent applications that are implicitly or explicitly using higher orders of co-
occurrence to improve performance in applications such as Search and Retrieval, Word Sense 
Disambiguation, Stemming, Keyword Classification and Word Selection.   

Philip Edmonds shows the benefits of using second and third order co-occurrence in (Edmonds, 
1997).  The application described selects the most appropriate term when a context (such as a sentence) is 
provided.  Experimental results show that the use of second order co-occurrence significantly improved the 
precision of the system.  Use of third order co-occurrence resulted in incremental improvements beyond 
second order co-occurrence. 

Zhang, et. al. explicitly used second order term co-occurrence to improve an LSI based search and 
retrieval application (Zhang, Berry and Raghavan, 2000).  Their approach narrows the term and document 
space, reducing the size of the matrix that is input into the LSI system.  The system selects terms and 

CACM MED CISI CRAN LISA NPL
[-1.0,-.01] 1.8% 1.9% 2.6% 2.5% 2.3% 3.0%
(-.01,.01) 1.9% 1.9% 2.3% 2.6% 2.1% 2.9%
[.01, 1.0] 96.3% 96.2% 95.0% 95.0% 95.6% 94.1%

CACM MED CISI CRAN LISA NPL
[-1.0,-.01] 21.3% 35.0% 31.7% 31.2% 28.7% 28.2%
(-.01,.01) 7.8% 11.4% 9.2% 10.6% 8.5% 9.9%
[.01, 1.0] 71.0% 53.6% 59.1% 58.2% 62.8% 61.9%

CACM MED CISI CRAN LISA NPL
[-1.0,-.01] 55.6% 75.0% 77.3% 72.8% 69.9% 66.9%
(-.01,.01) 17.3% 9.9% 8.7% 12.1% 10.3% 11.6%
[.01, 1.0] 27.1% 15.1% 14.0% 15.2% 19.9% 21.6%

CACM MED CISI CRAN LISA NPL
F-measure 0.13 0.56 0.23 0.14 0.20 0.16

LSI Performance Beta=1

1st Order

2nd Order

3rd Order

1st 2nd 3rd 1st 2nd 3rd

[-1.0,-.01] -0.40 0.68 0.49 (-9999,-.001] -0.53 -0.24 -0.29
(-.01,.01) -0.47 0.63 -0.45 (-.001,.001) 0.21 0.36 0.32
[.01, 1.0] 0.44 -0.69 -0.48 [.001, 9999) -0.04 -0.43 -0.38

[-1.0,-.01] -0.36 0.32 0.23 (-9999,-.001] -0.43 -0.29 -0.31
(-.01,.01) -0.35 -0.17 -0.34 (-.001,.001) 0.48 0.36 0.31
[.01, 1.0] 0.36 -0.12 0.02 [.001, 9999) -0.49 -0.44 -0.32

Cosine Similarity Term-Term Similarity

Cosine, K=Optimal TermTerm, K=Optimal

Cosine, K=100 TermTerm, K=100



 

documents for the reduced space by first selecting all the documents that contain the terms in the query, then 
selecting all terms in those documents, and finally selecting all documents that contain the expanded list of 
terms.  This approach reduces the nonzero entries in the term document matrix by an average of 27%.  
Unfortunately average precision also was degraded.  However, when terms associated with only one document 
were removed from the reduced space, the number of non-zero entries was reduced by 65%, when compared 
to the baseline, and precision degradation was only 5%. 

Hinrich Schütze explicitly uses second order co-occurrence in his paper on Automatic Word Sense 
Disambiguation  (Schütze, 1998).  In this paper, Schütze presents an algorithm for discriminating the senses 
of a given term.  For example, the word senses in the previous sentence can mean the physical senses (sight, 
hearing, etc.) or it can mean ‘a meaning conveyed by speech or writing.’   Clearly the latter is a better 
definition of this use of senses, but automated systems based solely on keyword analysis would return this 
sentence to a query that asked about the sense of smell.  The paper presents an algorithm based on use of 
second-order co-occurrence of the terms in the training set to create context vectors that represent a specific 
sense of a word to be discriminated.     

Xu and Croft introduce the use of co-occurrence data to improve stemming algorithms in (Xu and 
Croft, 1998).  The premise of the system described in this paper is to use contextual (e.g., co-occurrence) 
information to improve the equivalence classes produced by an aggressive stemmer, such as the Porter 
stemmer.  The algorithm breaks down one large class for a family of terms into small contextually based 
equivalence classes.   Smaller, more tightly connected equivalence classes result in more effective retrieval (in 
terms of precision and recall), as well an improved run-time performance (since fewer terms are added to the 
query).   Xu and Croft’s algorithm implicitly uses higher orders of co-occurrence.  A strong correlation 
between terms A and B, and also between terms B and C will result in the placement of terms A, B, and C into 
the same equivalence class.  The result will be a transitive semantic relationship between A and C.  Orders of 
co-occurrence higher than two are also possible in this application. 

In this section we have empirically demonstrated the relationship between higher orders of co-
occurrence in the SVD algorithm and the performance of LSI.  Thus we have provided a model for 
understanding the performance of LSI by showing that second-order co-occurrence plays a critical role.  In the 
conclusion we describe the applicability of this result to applications in information retrieval.   

 

4 Transitivity and the SVD 
 

In this section we present mathematical proof that the SVD algorithm encapsulates term co-occurrence 
information.  Specifically we show that a connectivity path exists for every nonzero element in the truncated 
matrix.  This proof was first presented in (Kontostathis and Pottenger, 2002b) and is repeated here. 

We begin by setting up some notation.  Let A be a term by document matrix.  The SVD process 
decomposes A into three matrices:  a term by dimension matrix, T, a diagonal matrix of singular values, S, 
and a document by dimension matrix D.  The original matrix is re-formed by multiplying the components, A = 
TSDT.   When the components are truncated to k dimensions, a reduced representation matrix, Ak is formed as 
Ak = TkSkDk

T  (Deerwester et al., 1990).   
The term-term co-occurrence matrices for the full matrix and the truncated matrix are (Deerwester 

et al., 1990): 
  B = TSSTT      (1) 
  Y = TkSkSkTk

T      (2) 
 
We note that elements of B represent term co-occurrences in the collection, and bij >= 0 for all i 

and j.  If term i and term j co-occur in any document in the collection, bij > 0. Matrix multiplication results in 
equations 3 and 4 for the ij th element of the co-occurrence matrix and the truncated matrix, respectively.  Here 
uip is the element in row i and column p of the matrix T, and sp is the pth  largest singular value. 
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B2 can be represented in terms of the T and S:  
 

 B2 = (TSSTT)( TSSTT)  = TSS(TTT)SSTT = TSSSSTT  = TS4TT    (5) 
 
An inductive proof can be used to show: 
 

  Bn =   TS2nTT       (6) 
 
And the element bij

n can be written: 
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To complete our argument, we need two lemmas related to the powers of the matrix B.   
 
LEMMA 1:  Let i and j be terms in a collection, there is a transitivity path of order <= n between 

the terms, iff the ij th element of Bn is nonzero.    
 
LEMMA 2:   If there is no transitivity path between terms i and j, then the ij th element of Bn (bij

n) is 
zero for all n. 

 
The proof of these lemmas can be found in (Kontostathis and Pottenger, 2002a).  We are now 

ready to present our theorem. 
 
THEOREM 1:  If the ij th element of the truncated term by term matrix, Y, is nonzero, then there is 

a transitivity path between term i and term j.   
 
We need to show that if yij ≠ 0, then there exists terms q1, … , qn,  n >= 0 such that bi q1 ≠ 0, bq1 q2 

≠ 0, …. bqn j ≠ 0.  Alternately, we can show that if there is no path between terms i and j, then yij = 0 for all k.   
Assume the T and S matrices have been truncated to k dimensions and the resulting Y matrix has 

been formed.  Furthermore, assume there is no path between term i and term j.  Equation (4) represents the yij 
element.  Assume that s1 > s2 > s3 > … > sk  > 0.  By lemma 2, bij

n = 0 for all n.  Dividing (7) by s1
2n, we 

conclude that 

 bij
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We take the limit of this equation as n à  ∞, and note that (sp/s1) < 1 when 2 <= p <= m.  Then as 
nà  ∞,  (sp/s1) 

2n à  0 and the summation term reduces to zero.  We conclude that ui1uj1 = 0.  Substituting back 
into (7) we have: 
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Dividing by s2

2n yields: 



 

ui2uj2 + jp
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Taking the limit as nà  ∞, we have that ui2uj2 = 0.  If we apply the same argument k times we will 
obtain uipujp = 0 for all p such that 1 <= p <= k.  Substituting back into (4) shows that yij = 0 for all k. 

The argument thus far depends on our assumption that s1 > s2 > s3 > … > sk. When using SVD it is 
customary to truncate the matrices by removing all dimensions whose singular value is below a given 
threshold (Dumais, 1993); however, for our discussion, we will merely assume that, if s1 > s2 > … > sz-1 > sz = 
sz+1 = sz+2 = … = sz+w > sz+w+1 > … > sk for some z and some w >= 1, the truncation will either remove all of the 
dimensions with the duplicate singular value, or keep all of the dimensions with this value.   

We need to examine two cases.  In the first case, z > k and the z … z+w dimensions have been 
truncated.  In this case, the above argument shows that either ui q = 0 or uj q = 0 for all q <=k and, therefore, yij 
= 0.   

To handle the second case, we assume that z < k and the z … z+w dimensions have not been 
truncated and rewrite equation (7) as: 
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The argument above can be used to show that uip ujp = 0 for p <= z-1, and the first summation can 

be removed.   After we divide the remainder of the equation by ns2
2 : 
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Taking the limit as n à  ∞, we conclude that jp
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 = 0, and bij
n is reduced to: 
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Again using the argument above, we can show that uip ujp = 0 for z+w+1 <= p <= k.  Furthermore, 
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And our proof is complete.
�

 
 

5 Conclusions and Future Work 
 

Higher order co-occurrences play a key role in the effectiveness of systems used for information retrieval and 
text mining.  We have explicitly shown use of higher orders of co-occurrence in the Singular Value 
Decomposition (SVD) algorithm and, by inference, on the systems that rely on SVD, such as LSI.  Our 
empirical and mathematical studies prove that term co-occurrence plays a crucial role in LSI.  The work 
shown here will find many practical applications.   Below we describe our own research activities that were 
directly influenced by our discovery of the relationship between SVD and higher order term co-occurrence. 

Our first example is a novel approach to term clustering.  Our algorithm defines term similarity as 
the distance between the term vectors in the TkSk matrix.  We conclude from section 3 that this definition of 
term similarity is more directly correlated to improved performance than is use of the reduced dimensional 
term-term matrix values.  Preliminary results (preprint available from the authors) show that this metric, when 
used to identify terms for query expansion, matches or exceeds the retrieval performance of traditional vector 



 

space retrieval or LSI. 
Our second, and more ambitious, application of these results is the development of an algorithm 

for approximating LSI.  LSI runtime performance is significantly slower than vector space performance for 
two reasons.  First, the decomposition must be performed and it is computationally expensive.  Second, the 
matching of queries to documents in LSI is also computationally expensive.  The original document vectors 
are very sparse, but the document by dimension vectors used in LSI retrieval are dense, and the query must be 
compared to each document vector.  Furthermore, the optimal truncation value (k) must be discovered for 
each collection.  We believe that the correlation data presented here can be used to develop an algorithm that 
approximates the performance of an optimal LSI system while reducing the computational overhead.    
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