Introduction to Information Retrieval

3. seminar

Measuring relevance effectiveness

University of Pannonia

Tamás Kiezer, Miklós Erdélyi

About relevance effectiveness

- Motivation
 - IR system development
 - Evaluating/comparing IR systems
- Definition of relevance effectiveness:
 - "the ability of a retrieval method or system to return relevant answers"
 - eg., how well or bad an IR system performs
- Relevance is subjective!

IR system evaluation

- Choose measurement method(s)
- Choose data to use for evaluation (eg. a standard test collection)
- Measure relevance effectiveness according to the chosen method(s)

Standard test collections

- Well-controlled
- Contain documents, queries, and relevance assessments for (most) query-document pairs
- Example:
 - CRAN (1950s)
 - TREC (Text REtrieval Conference, from 1992)
 - ADI
- Question: What could be problematic with measuring a Web search engine?

Sets-based measures (1)

- Precision (P): #(relevant items retrieved) / #(retrieved items)
- Recall (R): #(relevant items retrieved) / #(relevant items)
- Fallout: [#(retrieved items) #(relevant items retrieved)] / [#total items) #(relevant items)]
- Combination:
 - F-measure: trades off precision and recall
 - -F = 2PR/(P+R)

Sets-based measures (2)

Easily visualized by contingency table:

	relevant	nonrelevant
retrieved	true positives (tp)	false positives (fp)
not retrieved	false negatives (fn)	true negatives (tn)

• Then:

$$-P = tp/(tp + fp)$$

$$-R = tp/(tp + fn)$$

Other uses...

Exercise: plotting a PR graph, calculating MAP

• In response to queries q_1 , q_2 , q_3 an IR system returned the following sets of documents (relevant ones are starred) out of 125 documents:

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk})$$

	\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_3
1.	d_{15}	d_{17}^{*}	d_5^*
2.	$d_{23} *$	d_3	d_{43}
3.	$d_{\scriptscriptstyle 5}$	d_9 *	$d_{54}*$
4.	d_{76} *	d_{16}	d_{36}
5.	d_{125}	d_{25}^{*}	$d_{_{41}}*$
6.	d_{43}	d_{31}	d_{51}
7.	$d_{84} \\ d_6^{\ *}$	$d_{_{48}}*$	d ₆₃ *
8.	d_6 *		d_{26}
9.	d_{24}		
10.	d_{89}		
	Δ=15	Δ=10	Δ=6

Solution: precision-recall graph

Evaluation of ranked retrieval sets

- Results are ranked, ie., ordered
- Methods:
 - [MAP (mean average precision)]
 - -RP
 - M-L-S (user-based)

Review: RP method

- 1. Select meta-search engine to be measured.
- 2. Define queries q_i , i = 1,...,n.
- 3. Define the value of m; typically m = 5 or m = 10.
- 4. Perform searches for every q_i using the metasearch engine
 - as well as the search engines used by the meta-search engine, i = 1,...,n.
- 5. Compute relative precision for q_i as follows:

$$RP_{q_i,m} = \frac{T_i}{V_i}, \quad i = 1,...,n$$

6. Compute average: $\sum_{i=1}^{n} RP_{q_i,m}$ /n

Exercise: RP method

- Task: compute the average RP of MetaCrawler.com for the given queries.
- Search engines: Google, Yahoo!, MSN
- Settings:
 - m = 5
 - $-q_1$ = "strange museums"
 - q₂= "free wallpapers"

Review: M-L-S method

- Select search engine to be measured.
- 2. Define relevance categories.
- 3. Define groups.
- 4. Define weights.
- 5. Give queries q_i (i = 1,...,s).
- 6. Compute $P5_i$ and/or $P10_i$ for q_i (i=1,...,s).
- 7. The first 5/10-precision of the search engine is:

$$Pk = \frac{1}{S} \sum_{i=1}^{S} Pk_i$$
, where $k = 5$ or $k = 10$.

Exercise: M-L-S method

- Task: compute first 5 precision for the given hit lists of Google and Yahoo! according to <u>your</u> relevance judgement, and compare the two search engines.
- Categories: relevant/not relevant
- Groups:
 - First two hits, next three hits
- Weights:
 - First group: 10, second group: 5
- Queries:

$$- q_1 = \text{``gallup''}$$

$$- q_2 = \text{``kosár''}$$

$$no_relevant_hits_{1,-2,hit} \times 10 + no_relevant_hits_{3,-5,hit} \times 5$$

$$35 - ((5 - no_hits_{1,-5,hit}) \times 5)$$

Questions?