Introduction to Information Retrieval 2. seminar Vector space model, link analysis

University of Pannonia Tamás Kiezer, Miklós Erdélyi

Review (1)

- Document processing workflow
 - -Parsing
 - -Tokenization
 - -Stopword removal
 - -Stemming
 - -Inverted file building (indexing)

Review (2): Vector Space Model

- Documents are mapped into term vector space
- Dimensions represent a weight for one term
- Queries are treated like documents
- Documents are ranked by their similarity to the query

Review (3): weighting methods

- Binary weighting: $w_{ij} = \begin{cases} 1 & if \ t_i & occurs \ in \\ 0 & otherwise \end{cases}$
- Frequency weighting: $w_{ij} = f_{ij}$.
- Max-normalized (*max-tf*): $w_{ij} = \frac{f_{ij}}{\max_{1 \le k \le n} f_{kj}}$
- Length-normalized (*norm-tf*):
- Term frequency inverse document frequency
- Length normalized term frequency inverse document frequency (norm-tf-idf):

$$w_{ij} = \frac{f_{ij}}{\sqrt{\sum_{k=1}^{n} f_{kj}^2}}$$

$$w_{ij} = f_{ij} \times \left(\log \frac{m}{F_i}\right)$$

$$w_{ij} = \frac{f_{ij} \times \left[\log \frac{m}{F_i}\right]}{\sqrt{\sum_{k=1}^{n} \left(f_{kj} \times \left(\log \frac{m}{F_k}\right)\right)^2}}$$

Similarity measures

Cosine measure:

$$\sigma (\mathbf{w}_{j}, \mathbf{q}) = \frac{\sum_{i=1}^{n} w_{ij} q_{i}}{\sqrt{\sum_{i=1}^{n} w_{ij}^{2} \cdot \sum_{i=1}^{n} q_{i}^{2}}}$$

 $\sum_{n=1}^{n}$

• Dice's coefficient: $\sigma(\mathbf{w}_{b},\mathbf{q})$

) =
$$2 \cdot \frac{\sum_{i=1}^{n} w_{ij} q_{i}}{\sum_{i=1}^{n} (w_{ij} + q_{i})}$$

• Jaccard's coefficient:

$$\sigma \left(\mathbf{w}_{j}, \mathbf{q} \right) = \frac{\sum_{i=1}^{n} w_{ij} q_{i}}{\sum_{i=1}^{n} \left(\frac{w_{ij} + q_{i}}{2^{w_{ij} q_{i}}} \right)}$$

Exercise: TD matrix, VSM model

• Build the TD matrix for the following collection:

- Use binary weighting, then *norm-tf*
- Rank documents to the query "child infant home proofing safety" with the learnt similarity measures

 $t_9 = "Toddler"$

Solution

Dec	Similarity values (Rank)				
Doc.	Cosine	Jaccard	Dice		
D1	0.316	0.092	0.174		
	(4.)	(4.)	(4.)		
D2	0.516	0.142	0.26		
	(2.)	(2.)	(2.)		
D3	0.775	0.224	0.39		
	(1.)	(1.)	(1.)		
D4	0.4	0.094	0.178		
	(3.)	(3.)	(3.)		
D5	0.316	0.092	0.174		
	(4.)	(4.)	(4.)		
D6	0.316	0.092	0.174		
	(4.)	(4.)	(4.)		
D7	0	0	0		

Review: PageRank

- Idea: a Web page's importance is determined by the importance of the pages linking to it
- Extended version's interpretation: random surfer
- Simple formula: $R_i = \sum_{W_j \in B_i} \frac{R_j}{L_j}$
- Calculation by power method: $M'' = \alpha M' + (1 \alpha)M$ (with teleportation) $R_0 = [\frac{1}{N}, ..., \frac{1}{N}]^T$

 $M'' \times R_{i-1} = R_i$

$$m_{ij} = \begin{cases} \frac{1}{L_j}, & \text{if } W_j \to W_i \\ 0, & \text{otherwise} \end{cases} \quad m_{ij}' = \begin{cases} \frac{1}{N}, & \text{if } L_j = 0 \\ 0, & \text{otherwise} \end{cases}$$

Exercise: determine PR using power method

• Given the following graph:

Solution

• M'' =	0.0375	0.0375	0.8875	0.0375	
	М" —	0.0375	0.4625	0.4625	0.0375
	IVI —	0.3206	0.0375	0.3206	0.3206
		0.0375	0.0375	0.0375	0.8875

• R = [0.5 0.5 0.5 0.5]

Review: HITS

- HITS = Hyperlink Induced Topic Search
- A hub is a page pointing to many authority pages
- An authority is a page pointed to by many • Definition: $x^{\langle p \rangle} \leftarrow \sum_{q:(q,p) \in E} y^{\langle q \rangle}$
- $y^{\langle p \rangle} \leftarrow \sum x^{\langle q \rangle}$ $q:(p,q) \in H$
- Calculation by power iteration:

 $x_0 = [1, ..., 1]^T$, $y_0 = [1, ..., 1]^T$, then: $x_{i+1} = M^T y_i$, $y_{i+1} = M x_{i+1}$

Exercise: applying HITS

• Calculate the hub and authority scores for the nodes of the following mini graph:

Solution

- x = [0 0.7071 0 0.7071]
- $y = [0.6325 \ 0.3162 \ 0.6325 \ 0.3162]$

Questions?