

Bitmap Indexing-based Clustering and Retrieval of XML
Documents

Jong P. Yoon
Ctr. for Advanced Computer Studies

University of Louisiana
Lafayette, LA 70504-4330
jyoon@cacs.louisiana.edu

Vijay Raghavan
Ctr. for Advanced Computer Studies

University of Louisiana
Lafayette, LA 70504-4330

raghavan@cacs.louisiana.edu

Venu Chakilam
Ctr. for Advanced Computer Studies

University of Louisiana
Lafayette, LA 70504-4330

vmc0583@cacs.louisiana.edu

ABSTRACT
This paper describes a bitmap indexing based technique to
cluster XML documents. XML documents can be
hierarchically represented by elements. To improve
performance of information retrieval, documents can be
indexed using bitmap techniques. Such a bitmap index is
sparse, meaning it contains unnecessarily many zero bits,
especially for the word dimension. To remove zero bits and
improve the performance of information retrieval, we propose
to generate several small bitmap indexes that are not sparse.
Using the similarity and popularity operations available in
bitmap indexes, three clustering techniques are discussed: top-
down clustering, bottom-up clustering, and mixed clustering.
Experimental results are also shown in this paper.
Keywords
Clustering, Partitioning, BitCube, XML Indexing.

1. INTRODUCTION

EXtensible Markup Language (XML) is a standard for
representing and exchanging information on the Internet.
As such, documents can be represented in XML and
therefore content-based retrieval is possible. However,
because the size of XML documents is very large and the
types vary, typical information retrieval techniques such
as LSI (Latent Semantic Index) [7] are not satisfactory.
Information retrieval on the Web is not satisfactory due
to partly poor usage of structure and content information
available in XML documents[5].

We consider a document database (D). Each document
(d) is represented in XML. So, d contains XML-
elements (p), where p has zero or more words (w) bound
to it. Typical indexing requires a frequency table that is
a two-dimensional matrix indicating the number of
occurrence of the terms used in documents. By
generalizing this idea, we use a three-dimensional matrix
that consists of (d, p, w). We also treat a pair (p, w) as a
query. Given a pair (p, w), we want to find d from a
document database that is a triplet (d, p, w). In many
cases on the Internet, this query answering is often too
slow. A simple way to speed up query answering is to
speed up the distance calculations from well-organized
document clusters. In this paper, we propose a bitmap

indexing technique, which we call the “BitCube,” that
represents (d, p, w), and operations that can cluster such
documents efficiently. Before going further, consider the
following examples.

1.1 Motivating Examples

EXAMPLE 1: Suppose that a query Q1 is posed to find
all documents that describe “Clustering” in any figure
caption(s) of subsections. This type of queries cannot
easily be processed in relational document databases or
object-oriented document databases due to inflexible
modeling of irregularity of documents and unacceptable
performance. However, in XML, irregularity of
elements can be flexibly represented as shown in Figure
1.

EXAMPLE 2: Suppose that a query Q2 is posed to find
all documents that describe “Indexing” in more than one
sub-subsection. Notice that this type of queries asks for a
specific document structure, that is, not for section, nor
for subsection, but for sub-subsections. Searching an
entire XML database is costly because a word pattern for
search is rarely used if we search against a large
document database. That is, a word list for a document is
sparse as compared to the list of words available in the
database. Search for a sparse list of words is not
efficient. To resolve this problem, this paper proposes a
way of clustering XML documents (based on word). In
this way, searching can be restricted within only a
cluster, instead of all documents in order to improve the
performance.

1.2 Related Work

The conventional techniques used for document retrieval
systems include stop lists, word stems, and frequency
tables. The words that are deemed “irrelevant” to any
query are eliminated from searching. The words that
share a common word stem are replaced by the stem
word. A frequency table is a matrix that indicates the
occurrences of words in documents. The occurrence here

can be simply the frequency of a word or the ratio of
word frequency with respect to the size of a document.

However, the size of frequency table increases
dramatically as the size of the document database
increases. To reduce frequency tables, the latent semantic
indexing (LSI) technique has been developed [7]. LSI
retains only “most significant” of the frequency table.
Although the SVD trick reduces the size of the original
frequency table, finding such a singular matrix is not
trivial. Instead, this paper considers a more complex
frequency table that represents terms (or values)
according to an XML element ePath used in an XML
document. We describe a novel approach to decompose
a frequency table, if the table is a sparse matrix.

In addition, a new data structure, called X-tree, has been
introduced for storing very high dimensional data [1].
Inverted indexes have been studied extensively [8]. Fast
insertion algorithms on inverted indexes have been
proposed [9].

Numerous document-clustering algorithms appear in the
literature [10]. Agglomerative Hierarchical Clustering
algorithms are probably the most commonly used. Linear
time clustering algorithms, e.g., K-Means algorithm [4],
are also used for on-line clustering. An ordered sequence
of words is used to cluster documents available on the
Internet [14]. On the Internet, there are some attempts,
e.g., Alta Vista, to handle the large number of documents
returned by query refinement features.

The collection of bitmaps in a bitmap index forms a 2-
dimensional bit matrix [2]. A bitmap index has been used
to optimize queries [2,6,11]. In this paper, we propose a
3-dimensional bit matrix. Bit-wise operations developed
in the earlier work will also be generalized to the 3-
dimensional bit matrix context.

1.3 Organization

The remainder of this paper is as follows. Section 2
describes preliminaries such as element paths in XML
documents, and bit-wise operations in bitmap indexes.
Section 3 describes the similarity of XML documents,
the popularity of XML-elements, and partitioning
techniques. BitCube, a set of triplets (document d, XML-
element p, terms or contents w), is also introduced.
Section 4 describes various clustering techniques, and
their application to the BitCube indexing for content
querying. Section 5 describes the experimental results.
Interestingly enough, we find that once a BitCube is
constructed, bit-wise operations on XML documents are
executed in constant time. Section 6 concludes our work
by summarizing our contributions and providing
directions for future work.

2. PRELIMINARIES

This section defines technical terms borrowed from [13].

2.1 XML Document
Definition 2.1 (Element Content) An XML-element
contains (1) simple content, (2) element content, (3)
empty content, and (4) reference content.
!

As an example, consider an XML document as shown in
Figure 1. The element <section> in line (9) has a simple
content. The element <section> in line (1) has element
content, meaning that it contains two subsections as
shown in lines (2) and (9). Of course, two content types
can be mixed, e.g., the element <section> in line (2)
contains a simple content in line (2) and also elements in
lines (3)-(8). The element <verticalskip> contains empty
content. The content <figure> has reference content that
hyperlinks to a site.

 (1) <section>
 (2) <section> XML is represented in a bitmap indexing …
 (3) <section> It is a new standard … </section>
 (4) <section> An application is as shown in
 (5) <figure> http://www.a.b.c/clustering.algs </figure>
(6) <caption> Clustering Algorithm </caption>
(7) </section>

 (8) </section>
 (9) <section> Bitmap indexing technique … </section>
(10) </section>

Figure 1: XML Document

Definition 2.2 (ePath) Element Path, called “ePath,” is a
sequence of nested elements where the most nested
element is simple content element.
!

For example, in Figure 1, section.section.section.figure is
an ePath, but section itself is not an ePath due to the top
element <section> does not have simple content.

An XML document is defined as a sequence of ePaths
with associated element contents. An XML document
database contains a set of XML documents. In this paper,
we propose a bitmap index for an XML document
database. In a document-ePath bitmap index, a bit
column represents an ePath, and a row represents an
XML document. Of course, element contents, that is,
values or words, need to be taken into account. In doing
so, we need to consider 3-dimensional bitmap index,
which will be discussed in detail in Section 3. In this

section, we consider only a 2-dimensional bitmap index.
As an example of a bitmap index, assume those XML
documents in Figure 2.

 d1: d2: d3:
 <e0> <e0> <e0>
 <e1> V1 </e1> <e1> V1 </e1> <e1> V11 </e1>
 <e2> <e2> <e2>
 <e3> V2 V3 V5 </e3 <e3> V3 V7 </e3> <e3> V2 V7 </e3>
 <e4> V3 V8 </e4> <e4> V9 <e4> V3 V9 </e4>
 <e5 /> <e6> V4 </e6> <e5 />
 </e2> <e7> V6 </e7> </e2>
 </e0> </e4> <e9> V5 </e9>
 </e2> </e0>
 <e8> V6 V12 </e8>
 </e0>

Figure 2: Example of XML Documents

Figure 2 is a set of simple XML documents. First, we
need to define ePaths as follows:

p0=e0.e1, p1=e0.e2.e3, p2=e0.e2.e4, p3=e0.e5,
p4=e0.e2.e4.e6, p5=e0.e2.e4.e7, p6=e0.e8, p7=e0.e9,
Vi is a (key) word that is chosen from simple content to be
used for search.

2.2 Bitmap Indexing

If a document has ePath, then set the corresponding bit to
1. Otherwise, all bits are set to 0. For each ePath,
documents can be represented as shown in Figure 3.

Definition 2.3 (Size of Bitmap) |bi| denotes the size of a
bitmap bi, which is the number of 1’s in a bitmap bi, and
||bi|| denotes the cardinality of a bitmap bi, which is the
number of 1’s plus 0’s.

Figure 3: A Bitmap Index for Figure 2

Definition 2.4 (Hamming Distance) The distance
between two documents can be defined: dist(di, dj) =
|xOR(di, dj)|, where xOR is a bit-wise exclusive OR
operator. !

For example, the distance of two documents d1 and d2 in
Figure 3 is |xOR(d1, d2)| = 4. Notice that in a bitmap

index, if a bit represents a word, then the document
distance in terms of word can be obtained.

2.3 Popularity of Bit Column

A bit column in a bitmap index can be described by its
popularity. It is popular if used frequently enough. The
index for the most popular bit column is mode in a
bitmap index.

Definition 2.5 (Popularity) The popularity of a bit
column is pop(pi) = |pi|/||pi||. A bit column pi is n-popular
if pop(pi) ≥ n, where 0 ≤ n ≤1 for a given n. A bit
column pi is m-unpopular if pop(pi) ≤ m, (0 ≤ m ≤ 1).
!

For example, in Figure 3, p3 is 67 % popular because
popl(p3) = .67, while p4 is 33 % popular. Given a
bitmap index, using this notion, we can determine
whether an ePath is popular or unpopular. Popularity of
an ePath changes when a new document is added or
deleted.

We can classify bit columns into three cases. Now,
consider a bitmap index (for convenience, call it “the
new bitmap index”) after including the new “input
bitmap” in the target bitmap index. (1) If pop(pi) ≥ n in
the new bitmap index, then such pis of the input bitmap
are called “popular bit columns”; (2) If pop(pi) ≤ 1-n,
then pi of the input bitmap is a so called “weakening
unpopular bit column”; (3) If 1-n < pop(pi) < n, then pi
is called “strengthening unpopular bit column.”

2.4 Radius and Center

This section describes two features of bitmap indexes:
Radius and Center. Radius is a variance while center is a
mean as in statistics.

Definition 2.6 (Center) In a cluster of XML documents,
the center is a vector where each element of the vector is
the mean value of the corresponding bits of the
documents. !

For example, assuming that all documents in Figure 2 are
in one cluster, the center of that cluster is
{1,1,1,.67,.33,.33,.33,.33}.

Notice that a center can be computed by the mode or min
(max) value rather than the mean value in other
application domain.

Definition 2.7 (Radius) The radius of a cluster c is
defined as radius(c) =MAX{dist(dc, dj)}, where dc is the

1

1

1

p0

1 0 0 0 1 1 1 d3

0 1 1 1 0 1 1 d2

0 0 0 0 1 1 1 d1

p7 p6 p5 p4 p3 p2 p1

center of the bitmap index for the cluster c and dj is a
bitmap for jth document in the cluster c.
 !

Notice that dist used in this case is the generalized
version defined in Definition 4.1. For example, in Figure 3,

the center of the bitmaps d1, d2, and d3, in the bitmap
index, dc, is {1,1,1,.67,.33,.33,.33,.33}. The radius is
dist(dc, d5) = .2.

3. BITCUBE
In this section, we describe a 3-dimensional bitmap
index, called “BitCube” [13]. This technique was
originally introduced for the purpose of extending two-
dimensional bitmap indexes to three-dimensional
indexes.

3.1 BitCube
We revisit the representation of documents. XML
document is defined as a set of (p, v) pairs, where (1) p
denotes an element path (or ePath) described from the
root element, and (2) v denotes a word or a content for
an ePath. Typical methods of handling text-based
documents use a frequency table or inverted (or
signature) file that represents words for documents.
However, since XML documents are represented by
XML elements (or XML tags), the typical methods are

not sufficient. We propose in this section a 3-
dimensional bitmap representation, called BitCube.

A BitCube for XML documents is defined as BitCube =
(d, p, v, b), where d denotes XML document, p denotes
ePath, v denotes word or content for ePath, and b denotes
0 or 1, the value for a bit in BitCube (if ePath contains a

word, the bit is set to 1, and 0 otherwise).

For example, consider XML documents similar to those
documents shown in Figure 2. Five XML documents are
represented in Figure 5. A BitCube for a set of
documents: {d1, d2, d3, d4, d5}. Each documents
d1={(p0, v1), (p1, v2), (p1, v3), (p1, v5), (p2, v3), (p2, v8) },
.., d3={(p0,v11), (p1, v2), (p1, v7), (p2, v3), (p2, v9) …,
(pi,vi2), (pi,vi3), (pi,vi4), …, (pi,vij)}, and so on.

The approximate size of the BitCube is
(docs*words*paths)/8 bytes, where docs is the number of
documents, and paths represents the number of different
ePaths represented in the set of documents.

Bit columns for ePaths are initially organized in the same
order as the order in which the documents are processed
as in figure-4. Later, when a BitCube is partitioned,
ePath bits can be shifted.

Bit columns for words may be organized in many ways
that are well known.

1

1

1

1

1

p0

100011111010000011d4

110101011100000111d3

0

0

1

p13

0

0

1

p12

0

0

0

p11

0

0

0

p10

0

0

0

p9

0000001111111d5

0011011011111d2

1000110000111d1

p18p17p16p15p14p8p7p6p5p4p3p2p1

1

1

1

1

1

p0

100011111010000011d4

110101011100000111d3

0

0

1

p13

0

0

1

p12

0

0

0

p11

0

0

0

p10

0

0

0

p9

0000001111111d5

0011011011111d2

1000110000111d1

p18p17p16p15p14p8p7p6p5p4p3p2p1

Figure 4: A Bitmap Index

• Simple word organization. All words used in the
given XML documents are shown in a BitCube.

• Keyword organization. Only words importantly
meaningful in the given XML documents are
shown in a BitCube. The size of word list in
this way is smaller than the previous
organization.

• Signature word organization. This is similar to
keyword organization, but those meaningful
words are shown in the order of significance.

3.2 BitCube Operations

Three operations are described in this section: (1) ePath
slice, (2) word slice, and (3) document project. The
outcome of these operations, if applied against a
BitCube, is a 2-dimensional bitmap index. Furthermore,
these operations will be extended to “dicing” and
“querying” which results in a bitmap index.

The ePath slice operation takes a ePath as input and
returns a set of documents with words associated with it.

P_Slice(ePath) = {(doc, word) | ePath is used in doc,
and the word is associated with the
ePath}.

The outcome of this slicing is a 2-dimensional bitmap
index that represents a set of documents with a set of
words. The word slice operation takes a (search key)
word as input and returns a set of documents.

W_Slice(word) = {(doc, ePath) | word is associated
with the ePath which is in turn used in
doc}.

The outcome is a 2-dimensional bitmap index that
represents a set of documents with a set of ePath with

which the word is associated. Multiple word slices can
be combined together. The outcome of multiple word
slices is a combination of the outcomes of each word
slices. The way of combination depends on the way the
words are requested. For example, if they are
conjunctive, the outcomes need to be combined by
conjunction.

The document project operation takes a document as
input and returns a set of ePaths with words associated
with those ePaths.

Project(doc) = {(ePath, word) | entire content and
ePath pairs appeared in doc}.

The outcome is a bitmap index that represents a set of
ePaths with their content (or words). A typical method
for this project operation is a web browsing.

4. DOCUMENT CLUSTERING
Since low frequency words are represented for all the
documents in the BitCube, the BitCube may become very
sparse. It can be observed that very large number of
distinct words can possibly occur in the given set of
XML documents. These two factors make the Bitcube
large and sparse. A sparse BitCube is not efficient in
terms of space and access time. The bigger the BitCube,
the more is time taken for accessing it.

In order to overcome the problem of sparse BitCubes,
several smaller BitCubes are constructed or the BitCube
is divided into several smaller BitCubes, there by
reducing the size of each BitCube, and the content access
time. There are two approaches proposed: partitioning in
a top-down approach, and clustering in a bottom-up
approach. The querying is faster in a smaller BitCube.
The best way of constructing a smaller BitCubes is
clustering of the indexing data.

w0
w1

w2
w3

w4

wj

0

1

1

1

0

0

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

1

0

1

1

1

1

1

p0

10000011d4

00000111d3

0

1

0

pi

1111111d5

1011111d2

0000111d1

…p7p6p5p4p3p2p1 w0
w1

w2
w3

w4

wj

0

1

1

1

0

0

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

0

0

1

1

1

0

1

1

1

1

1

p0

10000011d4

00000111d3

0

1

0

pi

1111111d5

1011111d2

0000111d1

…p7p6p5p4p3p2p1

Figure 5: A BitCube: Example

4.1 Partitioning: Top-down Approach

In this approach all the documents are indexed for
ePaths and considered as one cluster in the beginning.
This cluster is recursively divided into smaller clusters
such that all the ePath-similar clusters are put together
into one cluster. Identifying the set of popular ePaths is
the basis for defining similarity in the TopDown
approach. There are three types of clusters possible in
this approach.
• Type-1 cluster would be collection of all the

documents that contain all the popular ePaths. That is
it’s the collection of all the rows in the original
cluster that have the bits corresponding to all the
popular ePaths set to 1.

• Type-2 cluster is the collection of all the documents
that contain at least one of the popular ePaths but not
all.

• The collection of all the documents that doesn’t
contain any of the popular ePaths is identified to be
of Type-3.

A set of XML documents can be partitioned into n clusters.
The number of partitions depends on the characteristics of
documents; that is ePath and words used in the documents. In
this section, for simplicity, we consider 2-dimensional bitmap
indexes, representing documents and ePath. The algorithm of
document partitioning is in Figure 6.

4.2 Clustering: Bottom-Up Approach
In this approach, each document is compared with the
existing clusters, and put into one if it potentially belongs
to any, otherwise a new cluster is formed with the current
document as centroid. The decision of whether a
document belongs to a cluster is made by comparing the
distance of the document from the centroid of that cluster
with a pre-set radius threshold. In order to improve the
performance of computing the center and distance
defined earlier, we redefine the distance as follows:

Definition 4.1 (Generalized Distance)

where center(ci) denotes the average of the kth bit in the
cluster ci for k>0.
!

If the distance is less than the radius threshold, then the
document is considered to belong to the cluster. If there
are more than one such clusters to which the document
can potentially belong to, then the closest cluster is
chosen for the document to be put in. Clusters generated
from this approach contain the documents that are nearer
to each other in the two-dimensional space. The
algorithm is in Figure 7. Notice that a cluster ci contains
one or more documents.

As per the earlier discussion, a BitCube is resulted from
the indexing of the given XML data set, but it is sparse.
In order to reduce the sparseness, here we propose two
types of clustering of the indices.

4.3 Early Clustering

∑
−

=
−=

1

0
)()(1),(

n

k
cjkcenterickcenter

njcicdist

Given a collection D of documents, let ti and ri be
the center and the radius of a clusters ci,
respectively. Let γ be the radius threshold (γ≥ri
≥0).

Consider two clusters, ci and cj, and assume ri ≥ rj.
Compute distance l = dist (ti, tj)
1. if l+rj ≤ ri

 then the cluster cj is merged into ci.

2. else if γ<
++

2
jrirl then two clusters ci

and cj are clustered to ci+j.

3. else they are not clustered.

Figure 7: Bitmap-based Clustering
Algorithm

partitioning (cluster c)
 Consider a bitmap index c(i,wj), where i denotes

(document, ePath) pairs, and j denotes words.
 Let n be n-popularity threshold and m be m-

nonpopularity threshold.

1. Compute pop(wj) for all j.
2. Split rows in c into three types of sub-

clusters, T1 for pop(wj) ≥ n; T2 for 1- m <
pop(wj)< n, and T3 for pop(wj) ≤ m.

3. Eliminate columns if the value of wj is 0.
4. If any Ti is not empty and || Ti || < ||c||

 then partitioning(ci) for all i

 else stop.

Figure 6: Bitmap-based Partitioning

Algorithm

The clustering is done before the indexing of the
documents. The given set of XML documents is divided
into number of smaller clusters. Each cluster is indexed
separately to form a separate BitCube. It can very well be
observed that the size of each of the resulting BitCubes
will always be smaller than that of the original BitCube,
which is formed from the normal indexing method before
clustering.
Initially all the documents are indexed on ePaths and
then clustered using one of the clustering approaches
discussed earlier. This results in the smaller document
sets, which generate comparably smaller BitCubes. As
the number of distinct words in each cluster be less than
or equal to the actual number of distinct words in the
given original data set, the over all space the BitCube
occupies is reduced.
When a query is posted, then first we have to find out to
which BitCube the queried contents belong to, and then
steer the query to that BitCube. There are two levels of
indexing, one, the indexing of the BitCubes and the
second being the BitCube itself. This is the main
disadvantage of this approach. For some kinds of queries
we might have to access more than one BitCube.

4.4 Delayed Clustering
The given set of XML documents is indexed to construct
the corresponding BitCube followed by clustering. The
number of words is the main measure of sparseness of a
BitCube. So if the number of words in the BitCube is
reduced, then the density of the BitCube can be
improved.
The BitCube is then expanded over the word dimension
for all the documents and ePaths, resulting in a bitmap
index with columns being all the distinct words of the
data set, and the rows being all the possible combinations
of the documents and ePaths of the given data set. It’s
thus a BitCube represented in two-dimensional space.
The bitmap index thus obtained is divided into smaller
clusters. The all clusters have similar column index; that
is, all the distinct words of the input data set. The all-
zero columns are then removed from the clusters in order
to reduce the number of words in each cluster. Thus the
smaller clusters are made denser by removing the
redundant words. As in early clustering, these smaller
clusters are indexed so that the queries can be directed to
the appropriate clusters.

5. EXPERIMENTAL RESULTS
The two approaches of clustering are evaluated for the
clustering time, and the number of clusters generated in
different test data scenarios. The test data collections are
generated by running a program. Sample documents

generated by the program are illustrated in Figure 2. The
experimental environment is on Windows 2000 with
256M Byte Memory. The measurement of the efficiency
and quickness of data retrieval is depicted in various
graphs. The evolution of a measuring technique and the
measurement of the effectiveness and the precision of the
data retrieval are in progress.

5.1 Comparison of the Clustering
Techniques
The two clustering techniques described earlier have
their own advantages. The TopDown clustering
technique, as by definition clustered based on the
similarity of the words in different document-ePath
combinations.

And so there can be many possible all-zero columns that
can be removed. Thus the TopDown approach gets to
denser indexing by discarding the many of the
unnecessary zeros from the simple Bitcube indexing. But
the TopDown clustering takes more time because this

technique clusters all the possible because this technique
clusters all the possible combinations of documents and
ePaths compared to only the documents in case of
BottomUp approach. The BottomUp approach is more
like dividing the data set into smaller sets based on the
similarity of the structure of the documents and not the
contents. Then each set is indexed to generate a smaller
BitCube, and each such set contains less number of
distinct words than in the original data set, there by
reducing the over all size of the BitCubes. The querying
can be done easier in this case compared to TopDown
clustering. The main disadvantage of BottomUp
technique is that there is an extra indexing on ePaths of
all the documents, to facilitate the clustering of the
documents based on their structure.
There are various methods evaluating the cluster quality.
We consider the two types of metrics for evaluating the
clustering quality: entropy, and F-measure. We assume
that a class c is predefined.

Figure 8: Indexing size with and without
clustering

• Entropy. The entropy of clustering cj,

()∑
=

−=
c

i
ijpijpjE

1
log

, where

jn
ijn

ijp =
, nij

is the number of documents in cluster cj that
belong to the class c, and nj is the number of
documents cj.

• F-measure. The F-measure of cluster cj and
class c,

() () ()
() ()iecisionicall

iecisionicalliF
PrRe
PrRe2

+
⋅⋅=

5.2 Clustering and Index Size

In the simple Bitcube indexing technique, the size of the
indexing is more, as all the ePaths, documents are
indexed against all the words. So even the less frequently
occurring words also indexed for all the ePaths and
documents, which make the indexing big and sparse. The
clustering of the documents is instrumental in making the
indexing denser and compact. The clustering saves a
considerable amount of indexing space. As depicted in
Figure 8, the experimental results for the increasing
indexing sizes of the document sets, indexed with and
without clustering techniques do reveal that the amount
of saved indexing space gets high for bigger document
sets. Figure 8, recommends using clustering techniques
while indexing because the saved indexing space makes
it possible to index bigger sets of documents.

5.3 Execution Time of BitCube Operations
We measured the execution time for the BitCube
operations: P-slice, W-slice and Document project with
and with out the clustering technique incorporated. The

execution times in both cases are scrutinized to find that
the time for slicing doesn’t change when the clustering is
used. As depicted in Figure 9, execution time for W-slice
is not deteriorated with the increasing number of
documents when the clustering is also incorporated.
Figure 10 describes that the P-Slice execution time is not
affected by the clustering used. When the clustering is
used, the execution time of the BitCube operations are
remained more or less same, while reducing the sparcity
of the indexing.

6. CONCLUSION
The main contributions of this paper are (1) the
application of bitmap indexing to represent XML
document collection as a 3-Dimensional data structure:
XML document, XML-element path, and terms or words,
(2) the definition of BitCube index based schemes to
partition documents into clusters in order to efficiently
perform BitCube operations, and (3) a document
retrieval technique based on application of BitCube
operations to subcubes resulting from the clustering
phase. (4) Even for big XML document collections, the
indexing is done in reasonable amount of time. The time
taken for various BitCube operations remained constant.

REFERENCES

[1] S. Berchtold, D. A. Keim, and H. P. Kriegel, The X-tree:
An Index Structure for High-Dimensional Data, Proc. Intl.
Conf. On Very Large Data Bases, Bombay, India, 1996,
28-39.

[2] C. Chan and Y. Ioannidis, Bitmap Index Design and
Evaluation, Proc. of Int’l ACM SIGMOD Conference,
1998, 355-366

[3] A. Gupta and I. Mumick, eds, Materialized Views,
Cambridge, MA: MIT Press, 2000.

[4] D. Hill, A Vector Clustering Technique, Mechanised
Information Storage, Retrieval and Dissemination,
North-Holland, Amsterdam, 1968.

[5] M. Kobayashi and K. Takeda, Information Retrieval on
the Web, ACM Computing Surveys, 32(2):144-173,
2000.

[6] P. O’Neil and D. Quass, Improved Query Performance
with Variant Indexes, Proc. of Int’l ACM SIGMOD
Conference, 1997, 38-49.

[7] C. Papadimitriou, H. Tamaki, P. Raghavan, and S.
Vempala, Latent Semantic Indexing: a Probabilistic
Analysis, Proc. of the 17th ACM Symposium on
Principles of Database Systems, 1998, 159-168.

[8] G. Salton and M. McGill, Introduction to Modern
Information Retrieval, New York, McGraw-Hill, 1983.

[9] A. Tomasic, H. Garcia-Molina, and K. Shoens,
Incremental Updates of Inverted Lists for Text Retrieval,
Proc. ACM SIGMOD Conf. On Management of Data,
Minneapolis, 1994, 289-300.

[10] P. Willet, Recent Trends in Hierarchical Document
Clustering: a Critical Review, Information Processing
and Management, 24:577-97, 1988.

[11] M. Wu, Query Optimization for Selections using
Bitmaps, Proc. Int’l ACM SIGMOD Conference, 1999,
227-238.

[12] J. Yoon and S. Kim, A Three-Level User Interface to
Multimedia Digital Libraries with Relaxation and
Restriction, IEEE Conf. on Advanced Digital Libraries,
Santa Barbara, 1998, 206-215.

[13] J. Yoon, V. Raghavan and Venu Chakilam, BitCube: A
Three Dimensional Bitmap Indexing for XML
Documents, Thirteenth International Conference on
Scientific and Statistical Database Management,
FairFax, VA, 2001.

[14] O. Zamir and O. Etzioni, Web Document Clustering: A
Feasibility Demostration, Proc. of ACM SIGIR Conf. on
Research and Development in Information Retrieval,

1998, 46-54.

Figure 9: WordSlice Time Comparision with and
without clustering.

Figure 10: PathSlice Time Comparision with and
without clustering.

	INTRODUCTION
	Motivating Examples
	Related Work
	Organization

	PRELIMINARIES
	XML Document
	Bitmap Indexing
	Popularity of Bit Column
	Radius and Center

	BITCUBE
	BitCube
	BitCube Operations

	DOCUMENT CLUSTERING
	Partitioning: Top-down Approach
	Clustering: Bottom-Up Approach
	Early Clustering
	Delayed Clustering

	EXPERIMENTAL RESULTS
	Comparison of the Clustering Techniques
	Clustering and Index Size
	Execution Time of BitCube Operations

	CONCLUSION
	REFERENCES

