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Abstract 

Practical information retrieval is pervaded by Boolean variety as much as it is by term selection.  One of the problems 
of building models that describe IR is therefore that of characterising the effect of Boolean variety on retrieval 
performance.  An approach to this problem is described based on the use of vectors to characterise retrieval 
performance and focusing on the changes in direction and magnitude of these vectors under the joint influences of term 
addition (i.e. query expansion) and choice of logic operator.  Several novel multivariate constructs are proposed based 
on this ‘logic/vector’ approach, including: (1) the centroid vector of the vectors defined by ANDing, ORing and AND 
NOTing a new term to a predecessor search expression, (2) the area defined by the vertices of these three terms, when 
two or three performance variables are used, and (3) changes to the vector angles induced by these logic operators.  The 
way in which these constructs change during query expansion offers a characterisation of that process and may suggest 
stopping rules for it.  An analysis of MEDLINE data is described which generates several initial hypotheses using these 
constructs. 

 
 
1. Introduction 
When one talks of modelling an information retrieval (IR) process, it is customary to see the domain of discourse as comprising: 
1. a database of documents or document surrogates1 which is being searched 
2. a person who acts so as to extract informing content from that database 
3. an articulant in the form of a structure (the ‘search expression’) describing, jointly, that person’s perception of what it is 

that is needed or ‘lacking’, using the database’s query language 
4. procedures for implementing the ‘housekeeping’ side of ‘3’, i.e. for accepting search articulants, and outputting documents 

to the human searcher.  These procedures are essentially in the domain of computer science 
5. experimental procedures for adjudicating on the appropriateness or ‘relevance’ of the documents delivered by the system, in 

reference to the original need that prompted the person’s search for them 
6. values of performance measures (PMs) chosen to characterise the effectiveness of individual instances of document 

retrieval 
The evaluation of the effectiveness of IR processes very often takes the form of choosing a pair of PMs, namely Recall (R) and 
Precision (P).  However, it can be argued that the decision to see effectiveness in such specific terms is unnecessarily and 
arbitrarily restrictive.  Why should we choose just two variables, and choose these to be probabilistic variables, and why these 
two particular probabilistic variables?  A more general, hospitable, and arguably more user-oriented view, would not be so 
restricted, i.e. would recognise additional or alternative variables.  For example, variables might be constructed which portray:  
(1) the degree of redundancy of information in the set of retrieved documents, (2) the novelty of retrieved documents to the 
searcher, (3) the value (‘utility’) of retrieved documents to the searcher, (4) the recency (‘topicality’) and/or likely rate of 
obsolescence of the information received, or (5) the size of the set of retrieved documents.  A general formalism for IR should, it 
is suggested, be expressed in terms of an arbitrary number of such variables, and not solely ‘R and P’.  In this paper we introduce 
one such general approach, i.e. one that is not specifically restricted to R and P.  However, in the absence of experimental data 
that is multivariate, we shall illustrate the approach using experimental data which is expressed in traditional terms, i.e. in terms 
of R-P values.   A large set of reviewing sources have been published on the topic of evaluation in general, of which [3,16] offer 
wide-ranging accounts.  A critical review of R and P, and suggested novel extensions to the classical definitions of these 
variables which recognise a ‘learning searcher’, is offered in [9].  See also [11,14] for relevant discussion. 
 
Bivariate performance measures (BPMs) which map pairs of values of R and P to a single figure of merit have also been 
proposed, e.g. the well-known expression E(β) [15]2.  Another such measure is the perhaps lesser known expression √RP [19].  A 
systematic review of BPMs has recently been offered in [3].  However, to our knowledge, a general multivariate approach to the 
evaluation of document retrieval systems has not yet been proposed. 
 
2. Using vectors to describe retrieval effectiveness 
Our interest here is in the potential usefulness of vectorial language as it may be applied to any experimental results, whatever 
the choice of PMs by the experimenter.  We limit our attention to (a) ratio-level variables, and (b) a minimum of two variables. 
Although the use of a vectorial language is a general one, we shall illustrate its use using the classic PMs of R and P, in view of 
the widespread acceptance of these variables.  Our interest is also focused on the use of this language to characterise changes 
                                                                        
1 Henceforth we shall simply say ‘documents’, while recognising that the vast majority of modern document databases outside 
the World Wide Web are surrogate in character, notwithstanding the rapid growth of full-text electronic sources both linear and 
hypertextual. 
2 We henceforth use 1- E(β) rather than E(β), so as to be consistent with the notion that a PM should increase as retrieval 
performance increases. 
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brought about by a choice of Boolean operator.  The changes concerned are, in the first instance, those that arise from adding a 
single search term to an existing search expression (perhaps just a single term) using one or other of the familiar Boolean 
operators AND, OR and NOT.  In effect, this is to seek to describe the effects of query expansion, term by term, under the variety 
in retrieval performance induced by these three logical operators.  The approach is an extension to the treatment of retrieval PMs 
given in [10] which largely used the language of directed line segments.  We note also that our use of Boolean operators is 
‘classical’, the complication of weighted Boolean operators as introduced in [17] is not considered. 
 
The use of a vector approach in the performance-variable setting is in contrast to the use of vectors to describe queries and 
documents, as pioneered by Salton (see, e.g. [16]), and later extended into the ‘Generalized Vector Space Model’ by Wong et al. 
[20].  In those approaches, the vectors concerned served to show the presence or absence of attributes, via either binary values or 
real-valued ‘weights’, rather than, as proposed here, as vectors of PM values.  In view of this novelty, the account given here is 
not claimed to be fully rigorous and general.  It is not entirely clear, for example, whether what is described for vectors based on 
two or three PMs can always be generalised to a larger number of PMs.  Our use of the vector cross product in several places 
(this product being defined only for vectors in R3) suggests the need for more fundamental, linear algebraic, development.  It is 
hoped that ‘theoretical’ colleagues will aid in this, that ‘experimental’ colleagues will find the methodology useful in analysing 
IR data from experiments, and that IR engineers will see the approach as a useful aid to the design of query-expansion 
algorithms. 
 
3. Logic trails through spaces defined by performance measures 
Imagine that a searcher has entered a single search term, T1 say3, in a document database and that the retrieval system then 
delivers some set of documents by way of reply.  Imagine also that an observation process exists that is accepted as valid by 
some chosen set of  stakeholders (e.g., the database manufacturer, an authorship community, a searcher community, the 
information management profession) and that this process leads to assertions as to the effectiveness of this search by evaluating 
particular PMs, labelled V1, V2, V3, V4, etc.  As intuitive ‘handles’, we might imagine that V1 represents R, V2 represents P, V3 
represents redundancy in the retrieved set (according to some more precise, instrumental definition), V4 represents novelty to the 
searcher (again dependent on some instrumental definition), etc.  Then a search statement based on this term of first choice to the 
searcher: 

S1 = T1 
will define a vector of values of the Vi.  Such a vector is illustrated in Figure 1, limited in scope to values of V1 and V2.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
The searcher, if dissatisfied with the set of retrieved records delivered by S1 might then choose a second term (T2, say) and 
choose it to have a logical relationship with T1 within the search expression.  (The new term might (1) occur to the searcher using 
personal prior knowledge, (2) be suggested as a result of inspecting informing retrieved records, or (3) be prompted 
algorithmically by query expansion algorithm.)   
 
If a conjunction relationship is chosen, the new search expression is:  

S2 = T1 AND T2.   
Alternatively, disjunction might be chosen:  

S3 = T1 OR T2  
or even the negated form:  

S4 = T1 AND (NOT T2),  
i.e.  S4 =  T1 NOT T2.4   
For search expression such as these, new vectors of V1 and V2 values will be defined.  These are illustrated in Figure 2 which 
assumes, in accordance with the well-known outcomes of Cranfield-like experiments. that conjoining T1 to another term in 
general increases P but decreases R, and that disjoining T1 to another term usually achieves the reverse.  This is, of course, to put 
on one side controversy as to the validity or R and P (reviewed, for example, in [9]) and it is also to ignore such effects as:  (1) R 
and P increasing together5, and (2) T1 AND T2 yielding exactly the same values of V1 and V2 as T1 OR T2.6.  The performance 

                                                                        
3  Our notation attempts to distinguish between the text ‘literal’ T1 (e.g. the character string “PHENYLALANINE”) and the 
logical variable defined by the mapping of documents to ‘True’ or ‘False’ according to whether they contain this literal or not. 
This distinction overcomes the confusion of students who ask ‘How can a keyword evaluate to True?’.  Wong et al. make this 
distinction [20], as did the author in his review of the signal-detection model of IR [6], and also more recently Dominich [4]. We 
use roman italic type for representations of literals (e.g. T1) and for PMs, boldface italic type for search expressions (e.g. T1), 
and boldface roman for vectors (e.g. A). 
4 For brevity we use NOT here to signify the combination of the use of the binary operator AND with the unary operator NOT.  
An analogy is with unary minus and binary minus in arithmetic where ‘a-b’ is an acceptable shorthand for ‘a+(-b)’. 
5  For formal arguments showing that this is possible, see [1,5]. 
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vector arising from disjoining T1 to a negated ‘good’ term, i.e. from using S4, is also shown, adverse in its influence as might be 
expected. 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2 
 
Further query expansion would involve further terms and choices of Boolean operator, e.g.:  

S5 = (T1 AND T2) OR T3 
and S6 = ((T1 AND T2) OR T3) AND T4 
The cumulative sequence of effects now might now be illustrated (plausibly) by the ‘trajectory’ shown in Figure 3, the lines 
being directed line segments.  The theoretical problem is then one of modelling such movements through the space defined by 
V1, V2, V3, …, both the actual trajectories generated in specific operational settings, and the possible trajectories taking Boolean 
variety and search term choice into account.  In this paper, we touch on only the latter, while noting that there may be significant 
conceptual problems in modelling the former which will be the subject of a future paper. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 3 
 
In each of the above cases, we assumed that the new terms brought into the search expression were ‘good’ terms.  We use this 
phrase to label terms that show an increase in a chosen PM variable when they are joined in some specified way to some 
specified search expression.  The concept is thus triply contingent, i.e. it depends on a choice of PM, the prescription of a 
previous search expression Si, and the prescription of some logical operator linking the term to Si.  In the above examples, a 
‘good term’ would be one which showed improved search performance as measured by M when S1 was replaced by one of the 
S2 or S3 forms, but a deterioration in search performance when S1 was replaced by the S4 form (without going into details here 
as to exactly how M was defined.)  A term-generation (i.e. ‘query expansion’) algorithm thus seeks to add new terms to a query 
where the terms are of two types: 
• Good terms: the term is such that M increases when the search expression is extended by ANDing or ORing it to that term, 

and decreases when the query is extended by negating the term; 
• ‘Usefully bad’ terms: the term is such that M increases when the search expression is extended by negating the term 

concerned. 
 
To gain a better foothold on the problem, it may be helpful to define concepts as follows: 
• a ‘term’ is used in this paper to stand for any document representative, e.g. an author’s name, a year of publication, a 

natural-language word or other character string or image (possibly taken from a controlled vocabulary of words or images, 
or from the text of the document.) 

• a ‘query’ is any unstructured set of search terms, {T1, T2, T3, …}.7    
• a ‘good search term’ is defined as above. a ‘proper query’ is a query consisting solely of good search terms. 
• a ‘complete proper query’ is a query that contains all good search terms, so that any search term which is excluded from a 

complete search query will, when negated and ANDed to a term in that query, lead either to improved or constant search 
performance. 

• ‘query expansion’ is a process that generates a sequence of nested queries such as: {T1}, {T1, T2}, {T1, T2, T3}, {T1, T2, 
T3, T4}, …., where term T1 is good and further terms T2, T3, … can be either good or usefully bad. 

                                                                                                                                                                                                             
6  This will happen when T1 NOT T2 and T2 NOT T1 both fail to retrieve any documents.  In effect, T1 and T2 are then seen by 
the indexer as exact synonyms. 
7 This usage may be distinct from other usages of this term, where it is sometimes used as a synonym for ‘question’, and can be 
identified with: (1) a search expression, (2) the behavioural situation that has prompted the database search, or (3) a character 
string representing a fragment of natural language descriptive of ‘2’.  The commonly used phrase ‘relevance to a query [or 
question]’ raises significant complications as between the second and third of these usages, even if these are brushed aside in 
Cranfield-like experiments. 
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The present discussion is limited to: (1) query expansion where each successive query is a proper query, and (2) none of the 
queries are complete.  In other words, we do not consider further here the device of negating usefully bad terms, and make no 
claim that the queries considered exhaust the set of good terms.  By way of a further disclaimer, we also do not consider the more 
general concept of query refinement processes, whereby query improvement can entail discarding search terms as well as adding 
new search terms to an existing set.  Such processes are more general than those of query expansion, and presumably will be 
central to algorithms supporting retrieval improvement under relevance feedback. 
 
The term ‘process’, used as part of the definition of ‘query expansion’, might refer to: (1) observation regimes focusing on real-
time usage of operational databases; (2) experimental regimes centred on usages of a test collection; or (3) feedback algorithms 
serving to prompt the searcher with new candidate terms, perhaps drawing information from data on term clustering or document 
clustering within the database, or within a predecessor set of retrieved documents, while doing so. 
 
4 Some constructs that can describe query expansion under Boolean variety 
Some constructs that may provide useful objects within theoretical schema are now described.  We assume that our queries are 
proper, but future workings of the theory may permit this assumption to be discarded.  We attempt to categorise these constructs 
according to whether we are expanding the query by: 
• One good search term, subject to Boolean variety in the way that the new term is employed 
• Several good search terms, under a fixed (chosen) Boolean operation. 
 
4.1 Constructs defined by expanding a query by one term under Boolean variety 

Consider a proper query Q made up of (good) terms T1, T2, …, Tm; (m>0), the terms concerned having contributed to some 
initial search expression, S1.  For example, S1 might have been chosen to be the all-ANDed form: T1 AND T2 AND … AND 
Tm.  If now this query is expanded by the addition of a single further (good) term Tn, to Q′, then three extensions to S1 become 
possible, namely: 
 S1 AND Tn 

S1 OR Tn 
S1 NOT Tn. 

Each of these logical expressions will be associated with a performance vector (v1, v2, …) where, as before, v1 stands for a value 
of the variable V1, v2 for a value of V2, and so on.8  Attaching primes to the values of the vi so as to distinguish the three 
performance vectors: 

The vector (v1, v2, v3, …)  is associated with the search expression  S1 AND Tn, 
The vector (v1′, v2′, v3′, …)  is associated with the search expression  S1 OR Tn, 
The vector (v1″, v2″, v3″, …)  is associated with the search expression  S1 NOT Tn, 

Each vector can (optionally) also be associated with a single (scalar) value of M, the multi-variable PM which has been chosen to 
describe retrieval effectiveness.  This value of M characterises the addition of a term Tn to the preceding query and when the 
preceding search expression is subject to variety in logical form.9  
 
At its simplest, M might be defined as a weighted sum of the vi values, with weights, ki say, serving to express a stakeholder’s 
view as to the relative significance of N variables Vi, i.e.: 

1

N

i
i

k Vi
=
∑  

Alternatively, and using Frants et al’s Ix notation, M could be defined as a multivariate development of, say, 1-E(β) or √RP, as in 
the following,: 
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8 The associations will be achieved by a scientific, not a mathematical regime, instanced by the protocols embedded in TREC and 
Cranfield experiments with their attendant assumptions.  Given some choice of performance variables Vi, these vectors will, in 
particular, be determined by a choice of database, and a choice of method for partitioning the database by the informativeness of 
its records relative to the information need prompting the search.  (Later, we will question whether such a partitioning is possible 
in principle, and suggest that performance measures should alternatively partition the set of retrieved documents. 
9 At the risk of pretentiousness, we might describe the potential influence of term Tn as a vector of values of the variables: 

{OPAND ε{0,1}, OPOR ε {0,1}, OPNOT ε {0,1}, V1, V2, V3, …} 
where the 0s and 1s here serve simply as index values recording which of the three logical operators is being employed, and 
where it is understood that only one non-zero index value may be present. 
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―a new expression suggested by the Cobb-Douglas production function used in econometrics but apparently not yet used in an 

IR setting might also prove to be ‘valid’, i.e. attractive to stakeholders  The term tue in the latter expression is introduced to 
accommodate differences in significance attached by different stakeholders to the value of M, e.g. by different searchers based in 
the same behavioural situation, in contrast to the ki weights which reflect relative validities in the constituent Vi.  When just two 
PMs are used, and those PMs are chosen to be R and P, then E(β) or 1- E(β), or √RP can, of course, be used for M just as they 
are. 
 
A construct showing the overall effect of Tn as an adjunct to S1, i.e. one which blends the three vectors of vi values, is their 
resultant vector.  Denoting this vector by r, its definition is: 

r =  (v1+ v1′+ v1″,  v2+v2′+ v2″, v3+v3′+ v3″, …) 
Its magnitude10  r, is given by:  

r  = √[(v1+ v1′+ v1″)2 +  (v2+v2′+ v2″)2 + (v3+v3′+ v3″)2 + …] 
and its projections onto V1, V2, V3, etc can be written as r cos α, r cos β, r cos γ, etc, where cos α, cos β, cos γ, … , are the 
respective ‘direction cosines’ of r.  For example, the angle α between r and its projection on to the variable V1 is given by: cos α 
= (v1+ v1′+ v1″)/r. 
 
Using A, B and C as abbreviations for the vectors (v1, v2, v3, …), (v1′, v2′, v3′, …), (v1″, v2″, v3″, …), respectively, and calling 
the scalar values of M appropriate to each of these vectors M(A), M(B) and M(C) respectively, a weighted resultant vector of r 
can also be defined:  

rc  = [M(A) A + M(B) B+M(C) C] / [M(A)+ M(B)+ M(C)]. 
the so-called centroid, rc. 
 
Angles can also usefully be defined, e.g. between: 
• the resultant r and A, B and C; 
• the centroid rc and A, B and C, and 
• the vector defined by the original search expression S1, and A, B and C.  
We refer to the last of these angles as ‘torsions’ since this term seems to convey the idea of a turning movement (within the 
outcome space determined by the variables Vi) induced by a change in the search expression arising from the introduction of the 
new term together with one or other of the three operators. 
 
We note also that the Euclidean Distance between the resultant vector r and each of these constituent vectors can be defined.11  
For example, the Euclidean Distance between the resultant r and the vector which is generated by the particular search 
expression S1 AND Tn having coordinates (v1, v2, v3, …) is: 

√[ ((v1+ v1′+ v1″+…) - v1)2 + ( (v2+v2′+ v2″+… ) - v2)2 + ((v3+v3′+ v3″, …) - v3)2] 

i.e. √[ ( v1′+ v1″+…)2 + ( v2′+ v2″+… )2 + (v3′+ v3″, …)2]. 
 
The area defined by A, B and C constitutes yet another construct that can represent the impact of query expansion on retrieval 
search performance, when AND, OR and NOT are applied independently to a new term joined to S1, and there are just two or 
three PMs.  This area is illustrated in Figure 4 for the case where there are just two PMs, V1 and V2.  Assuming that Tn is a 
‘good’ term, ANDing it to S1 will extend the vector to A by means of the directed line segment AB, i.e., loosely speaking, 
‘backwards and upwards’ and hence increase this area.  Similarly, ORing Tn to S1 will be a useful action in extending search 
performance ‘downwards and to the right’, and hence again increase this area.  The search expression S1 NOT Tn, 
notwithstanding its adverse effect on search performance when Tn is ‘good’, will also increase this area (by taking the (V1,V2) 
coordinate ‘backwards and downwards’).  This measure is thus an indicator of the effectiveness of the query expansion by 
drawing in term Tn but as yet not specifying the logic to be used, i.e. this measure ‘controls for logic’.  For convenience, we 
henceforth refer to this area as the ‘Boolean Area associated with the addition of a new query term’. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 
A theoretical question here, which we do not attempt to answer, is how the behaviour of different BPMs relates to the increases 
in Boolean Area.  Examinations of contour plots for 1-E(β) or √RP suggest that although an ANDing with a new term will tend to 
take performance ‘backwards and upwards’ (when R and P are used), this does not necessarily lead to an improvement in 
retrieval performance as conceived by these measures.  Also, an ORing that takes performance ‘downwards and to the right’ does 
not necessarily lead to an increase in 1-E(β) or √RP.  An alternative line of thought asks what functional relationships there are 

                                                                        
10  Interpreted as a vector’s so-called ‘p-norm’, with p=2. 
11 This usage is different from the author’s earlier usage (e.g. [6]) where this term is defined as √(R2+P2). 

 

V1 

V2 

S4

S2 

S3 

The area defined by the 
three solid lines describes 
the effects of joining term 
T1 to S1 by the three 
different types of logical 
extension 



 
 
 

6

between the area (as we have defined it) and the scalar values of M(A), M(B) and M(C), for a given choice of M, and even 
whether requirements might be laid down for these relationships which M should be required to satisfy?  For example, should M 
be required to be of such a form that it increases monotonically with area, when the search sequence: S1 AND T1,  S1 AND T2,  
S1 AND T3, … , is followed, with S1 held constant?  Ultimately, the resolution of such issues lies not in mathematics but in the 
stakeholders’ hands, since the system is created for their benefit.  (A more important experimental matter would appear to be the 
identification of those PMs that have the most validity for the stakeholders, and then to explore the variability in the vector of 
values of those PMs under query expansion.) 
 
To avoid misunderstanding, we emphasise that the term ‘independently’, as used above, refers to the separate applications of the 
AND, OR and NOT logic operators.  If we had used this term in its stricter probabilistic sense, the three extensions of S1 that we 
have described are possibly dependent, i.e. can generate sets of documents (‘events’) that are dependent.  This observation 
follows from the fact that the elementary logical conjuncts (ELCs) that define the disjunctive normal forms (DNFs) of the three 
expanded search expressions partly overlap.  This is clearer if the three expanded search expressions are written out: 

S1 AND Tn is already in DNF. 
S1 OR Tn, if re-expressed in DNF, is: (S1 AND Tn) OR (S1 NOT Tn) OR (NOT Tn AND S1) 
S1 NOT Tn, if re-expressed in DNF is:  (S1 NOT Tn) OR (NOT S1 AND Tn) 

It is then apparent that if S1 AND Tn retrieves even a single document, this must also affect the retrieval action of S1 OR Tn.  
(The same would also hold if Tn NOT S1 retrieved even a single document.)  Accordingly, the ‘events’ defined by the two 
document sets must be dependent in that case.  Similarly, if the search expression: S1 NOT Tn retrieves even a single document, 
this will also the document set retrieved by S1 OR Tn.  Dependence as between the two document sets is therefore again 
determined. 

4.1.1 Summary of basic constructs 
We summarise here the devices that appear to be useful in portraying the net effect of expanding Q to Q′ through the addition of 
a single term, Ti.  We use S to stand for a vector of values vi determined by a search expression S which uses all of the terms in 
the query Q, and s for the magnitude of the vector S. 
 
Constructs 1 and 2:  The resultant vector r = A+B+C, with (positive) magnitude r; or alternatively, taking M-values into 
account, the centroid vector: rc  = [M(A) A + M(B) B+M(C) C] / [M(A)+ M(B)+ M(C)]. 

Construct 3:  The Euclidean distances between r and each of A, B, C. 

Constructs 4, 5 and 6:  The angles between r and A, r and B, and r and C. We refer to these angles as the ‘torsions’ on S 
induced by the query expansion.  For example, the angle between r and A is  
cos-1(r∙A/ r ), where ‘∙’ denotes dot product. 

Construct 7:  ‘Boolean area’: the area enclosed by the vertices of A, B and C, in the case where there are exactly two PMs V1 
and V2, or exactly three PMs, V1, V2 and V3.  In the latter case, this area can be found from the expression:  ½ | (v1′-v1, v2′-v2, 
v3′-v3) X (v1″-v1, v2″-v2, v3″-v3) ,where ‘X’ here denotes vector cross product, and ‘|…|’ denotes the unsigned value of the 
result.12  Boolean Area is a function of an ordered pair of logical variables. 
Notes to clarify Construct 7: 
1) This area will evaluate to 0 if any two of A, B and C are identical, in which case the three vectors do not define a plane  

This will occur in practice when, for example, S1 AND Tn, and  S1 OR Tn each determine exactly the same set of vi 
values, which will happen whenever  S1 NOT Tn and NOT S1 AND Tn each retrieves zero documents. 

2) A vector area can, if wished, also be associated with A, B and C, defined (when there are three variables Vi) by: 
½ [ A X B + B X C + C X A ]. 

3) The discussion here is at present limited to the use of three PMs, V1, V2 and V3.  Development of the discussion for a 
larger number of PMs is in progress. 

4) In the experimental work described below, we evaluated the areas defined by the following logical ‘triples’: 
T1 AND T2,  T1 OR T2,  T1 NOT T2  (i.e. expanding the query from {T1} to {T1,T2}) 
T1 AND T2 AND T3,  T1 OR T2 OR T3,  T1 NOT T2 NOT T3  (i.e. expanding the query from {T1} to {T1,T2, T3}) 
T1 AND T2 AND T3 AND T4,  T1 OR T2 OR T3 OR T4,  T1 NOT T2 NOT T3 NOT T4  (i.e. expanding the query from 
{T1} to {T1,T2, T3, T4}) 
T1 AND T2 AND T3 AND T4 AND T5,  T1 OR T2 OR T3 OR T4 OR T5,  T1 NOT T2 NOT T3 NOT T4 NOT T5  (i.e. 
expanding the query from {T1} to {T1,T2, T3, T4, T5}) 
These areas do not exactly conform to the definition of Boolean Area defined as Construct 7, but: (1) may assist in 
generalising that definition, and (2) portray search performance in a slightly different way. 
 
 

                                                                        
12 The volume of the parallelepiped defined by A, B and C, i.e. the determinant whose rows are made up A, B and C, may also be 
useful when there are three Vi variables.  This volume is given by the unsigned value of A∙(B X C),where  ‘∙’ stands for the 
scalar or ‘dot’ product of two vectors. 
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4.2 Further constructs defined by expanding a query by several terms when the Boolean operator is fixed 

If we permit variety in the choice of a successor term while holding constant the logical operator to be used on that term rather 
than permitting variety in the choice of operator for a particular successor term, some differences arise in the constructs that can 
be employed.  We now have a ‘vector bundle’ [13] for each logic type [9], with each bundle defined by an arbitrary number of 
vectors each of which is associated with a choice of successor terms, in contrast to the scant three vectors defined by AND, OR 
and NOT variation applied to a single term, as above.  Figure 5 illustrates the effects of predicating a set of terms Ti on a fixed 
search expression S1, in the three cases where the members of the set are ANDed to S1, ORed to S1, and negated after S1. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5 
 
Some constructs suggested by the preceding discussion are, for each vector bundle: (1) a set of M values, with associated 
statistics; (2) for each variable Vi, sets of angles between each member of the bundle and the Vi variable, with associated 
statistics; and (3) a set of torsions induced by each of the terms within it to a chosen predecessor search statement S1, and again 
statistics of these torsions.  Since each of the three vector bundles has a resultant vector, and also a centroid vector, we can also 
evaluate the area defined by connecting the vertices of the three resultants or centroids. 

4.2.1 Summary 
For brevity, we do not write out the above formally, since they are suggested by the constructs given in 4.1.1.  In any case, the 
schema described in 4.1 would appear to be more relevant to real world IR practice as discussed in this paper, i.e. to query 
expansion, where the query is expanded term by term rather than with a process of flooding a search process with a set of new 
terms all at once. 
 
5. Some questions for experiments 
Various empirical questions are suggested by the preceding discussion.  For example, as query expansion takes place, building on 
to an initial single-term query T1 single term by single term: 
• How rapidly do M(A) M(B) and M(C) increase13 and towards what apparent limits? 
• How rapidly does the area defined by A, B and C increase, and to what apparent limit? 
• What torsions are exhibited and what are their statistics? 
• How sensitive are the effects observed to the choice of query expansion algorithm (or process)?  
In each case, we should of course, for realism, add such contingencies as “for a given set of variables Vi, a given database, and a 
given observational regime.”  The sensitivities of the above effects to variation in choice of database, etc, then generates further 
hypotheses. 
 
6. Some hypotheses suggested by the author’s Medline data, using some of the 

previous constructs 
In order to obtain some initial, selective, answers to the above questions, the author’s own Medline data set [5-6] was 
reexamined. This data set was obtained using an observational regime that accepted the validity of the classical measures of R 
and P, i.e. it adopted a Cranfield viewpoint wherein information is seen as capable of prior-to-search instrumental definition.14  
However, the regime contrasted with Cranfield-like experiments (and therefore with the TREC projects) in that it did not accept 
the validity of third-party relevance judges, i.e. of the concept that such persons could function within an experimental regime 
divorced from real world settings of need to which their individual subjectivities were party.  The settings recognised in the 
experiment were chosen to be the preparation and publications of medical review papers, where the authors might reasonably be 
expected to have exercised competent and reasonably exhaustive ‘including’ and ‘excluding’ judgements as to the sources that 
were relevant, and where the act of citation by the review paper constituted an observable, instrumental, definition of relevance.  
Two additional claims on validity in the data sets are: (1) a complete database15 was used rather than a test-collection, and (2) 
queries were defined algorithmically rather than by subjective arbitration.   
 

                                                                        
13 We assume here that M is defined such that improved search performance leads to a higher value of M.  Since E(β) decreases 
when search performance improves, our remark would apply to 1- E(β) in the two-variable case. 
14 For revision of this view, see [7]. 
15 A subset of Medline was identified according to the time-period of publication defining eligibility for inclusion in the review, 
this data being obtained in corrrespondence with each review’s author.  (Frequencies of non-relevant documents for individual 
ELCs were identified in a large (512444 records) sample of Medline, and then multiplied by a proportionality constant 
appropriate to the size of the subset.)  The size of the subset of the database was typically about 2x106  ―well in excess of that 
used in classical test collections, but comparable with the standard TREC task of about 500,000 documents.. 
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The results below pertain to averaged data for each of two query expansion algorithms.  Averaging of probabilities was 
undertaken before the analyses.  (The probabilities concerned were those of each ELC taking the value ‘True’, for (1) the set of 
relevant documents, and (2) the set of non-relevant documents.)  Also, the Generality values attaching to each partitioning of the 
database, were averaged before the analyses were undertaken.  Accordingly, the results are claimed to be indicative and 
suggestive only, and not conclusive.  They are offered solely to suggest possible general effects that might later be verified, 
falsified or clarified following more extensive experimentation, i.e. they are seen only as ‘hypothesis suggesting’.16 
 
The query definition and expansion algorithms were defined by the following rules: 
1. Choose and prioritise terms according to their relative specificity (i.e. frequency in the set of relevant documents divided by 

frequency in that section of the database regarded as within the time-scope of the reviewing author).  We refer to this 
algorithm as the ‘RS algorithm’.  The sample size was 31, i.e. the algorithm was applied to 31 partitionings of Medline. 

2. Choose and prioritise terms by first clustering all those included in the set of relevant documents and occurring twice or 
more, and then use single-link, Euclidean distance, nearest-neighbour clustering, the shallowest-clustered―i.e. most 
broadly applied―terms being seen as the most eligible.  We refer to this algorithm as the ‘CL algorithm’.  The sample size 
was 29.17 

In each case, the query was expanded from one term to five terms.  In general, the successive choices of terms differed 
significantly as between the two algorithms.18  The performance of individual search expressions based on the queries so defined 
was expressed in terms of an (R,P) pair of values, which was then mapped to values of 1- E(β), with β=0.5, and √RP. 
 
Some of the results of the analysis are shown in the following tables. Tables 1-3 show the variations in 1- E(β) and the angle 
shown for the three logic forms under query expansion, for the two methods of query definition and expansion.  The poor 
performance of Medline as shown by the experimental regime is readily apparent, falling very much below the “R=50%, 
P=50%” suggested in many IR writings, and suggesting significant needs for improved retrieval technology. Table 4 shows the 
changes in area under query expansion, for the two methods.  Figures 6-7 show selective directed line segment bundles 
determined in accordance with the discussion of 4.2 for the two methods of query expansion and where the search expression 
builds from T1 by:  (1) choosing one of four successor terms, and (2) one of the three logical operators.  Interestingly (but 
perhaps as expected) ANDing a poor term to a good term can produce a roughly comparable effect to NOTing the poor term to a 
good term.  As previously, we do not introduce the additional complication of weighted Boolean operators. 
 

Search expression 
 

Query definition and 
expansion method 

Angle between (R,P) 
vector and R-axis 

1- E(β) 
(β=0.5) 

√RP 

T1 RS-expansion 2.81º 0.0185 0.0675 
 CL-expansion 0.788º 0.00460 0.0315 
T1 AND T2 RS-expansion 46.3º 0.130 0.128 
 CL-expansion 23.0º 0.0881 0.120 
T1 AND T2 AND T3 RS-expansion 82.5º 0.134 0.112 
 CL-expansion 77.1º 0.268 0.214 
T1 AND T2 AND T3 
AND T4 

RS-expansion 88.2º 0.119 0.151 

 CL-expansion 85.3º 0.198 0.183 
T1 AND T2 AND T3 
AND T4 AND T5 

RS-expansion 89.6º 0.0361 0.0862 

 CL-expansion 87.8º 0.121 0.143 

Table 1 
 
 

Search expression 
 

Query definition and 
expansion method 

Angle between (R,P) 
vector and R-axis 

1- E(β) 
(β=0.5) 

√RP 

T1 RS-expansion 2.81º 0.0185 0.0675 
 CL-expansion 0.788º 0.00460 0.0315 
T1 OR T2 RS-expansion 1.00º 0.0109 0.0660 
 CL-expansion 0.141º 0.00108 0.0175 
T1 OR T2 OR T3 RS-expansion 0.459º 0.00649 0.0582 
 CL-expansion 0.0738º 0.000750 0.0167 
T1 OR T2 OR T3 OR T4 RS-expansion 0.200º 0.00307 0.0416 
 CL-expansion 0.0640º 0.000813 0.0195 
T1 OR T2 OR T3 OR T4 
OR T5 

RS-expansion 0.0625º 0.000415 0.0140 

 CL-expansion 0.0436º 0.000613 0.0178 

Table 2 
                                                                        
16 For more discussion of the use of ELCs as data elements, see [4], although the latter paper was mostly concerned to re-express 
the Swets model in discrete rather than continuous terms, and to interpret a document ‘ranking’ process in logic terms, namely as 
a process of successive disjunction applied to a weak order of the set of ELCs. 
17 The CL algorithm failed with two of the partitionings, verified in correspondence with the author of the CLUSTAN program. 
18 For example, with one partitioning of Medline, the RS algorithm generated the following terms (in the order given): 
NATRIURESIS, DESOXYCORTICOSTERONE, ALDOSTERONE, VASOPRESSIN, GLOMULAR FILTRATION RATE, 
while the CL algorithm generated the following terms (also in the order shown): ADRENALECTOMY, OSMOLAR 
CONCENTRATION, WATER, DESOXYCORTICOSTERONE, DIURESIS.  There was just one query term in common, in this 
case. 
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Search expression 
 

Query definition and 
expansion method 

Angle between (R,P) 
vector and R-axis 

1- E(β) 
(β=0.5) 

√RP 

T1 RS-expansion 2.81º 0.0185 0.0675 
 CL-expansion 0.788º 0.00460 0.0315 
T1 NOT T2 RS-expansion 2.95º 0.0114 0.0408 
 CL-expansion 0.814º 0.00149 0.0101 
T1 NOT T2 NOT T3 RS-expansion 3.75º 0.00997 0.0317 
 CL-expansion 0.834º 0.000895 0.00595 
T1 NOT T2 NOT T3 
NOT T4 

RS-expansion 4.08º 0.00470 0.00139 

 CL-expansion 0.856º 0.000674 0.00443 
T1 NOT T2 NOT T3 
NOT T4 NOT T5 

RS-expansion 4.36º 0.00470 0.0139 

 CL-expansion 0.893º 0.000589 0.00379 

Table 3 
 
 
 
 

Query expansion* Boolean Area Change in Boolean Area 
{T1}  (RS-method) (not defined) (not applicable) 
{T1}   (CL-method) (not defined) (not applicable) 
{T1,T2}   (RS-method) 0.0194 (not applicable) 
{T1,T2}   (CL-method) 0.0103 (not applicable) 
{T1,T2,T3}   (RS-method) 0.0789 0.0595 
{T1,T2,T3}   (CL-method) 0.0933 0.0830 
{T1,T2,T3,T4}   (RS-method) 0.263 0.184 
{T1,T2,T3,T4}   (CL-method) 0.173 0.0797 
{T1,T2,T3,T4,T5}   (RS-method) 0.350 0.0870 
{T1,T2,T3,T4,T5}   (CL-method) 0.226 0.0530 

Table 4 
*  See Section 4.1.1, ‘Construct 7’ Note 4, for clarification as to how Boolean Area is defined here. 
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Figure 6 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 
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6.1 Hypotheses suggested by the Medline experiments 

The Medline data shown in Tables 1-4 and Figures 6-7 suggested the following conjectures, or more generously, hypotheses.  As 
indicated by earlier discussion, they are derived from and therefore may be restricted to conditions under which query expansion 
is algorithmic rather than under human operator control, and from 1 to 5 terms, and also where terms are chosen so as to be 
‘good’ as defined in the text.  (‘Usefully bad’ terms were not included in the expansion.)  These hypotheses are seen as 
provisional and suggestive of further experimental work that might support, falsify or clarify them, and are not claimed to be 
conclusive. 
Hypothesis 1: The variability in Precision associated with ANDing a given term with a new term is much greater than that 

obtained by ORing. (See Figures 6 and 7) 
Hypothesis 2: ANDing a weaker term to an effective term can give roughly comparable Precision to that obtained by 

NOTing with that weaker term.  (See Figures 6.) 
Hypothesis 3: Using AND-logic, the angle between the P=0 vector (i.e. R-axis) and the (R,P) vector increases 

monotonically and rapidly up to almost 90˚. 
Hypothesis 4: Using OR-logic, the angle between the P=0 vector (i.e. R-axis) and the (R,P) vector decreases 

monotonically and rapidly down to almost 0˚, but within a narrow angular range of between 0˚ to 5˚. 
Hypothesis 5: Using NOT-logic, the angle between the P=0 vector (i.e. R-axis) and the (R,P) vector remains fairly 

constant within the range 0˚ to 5˚. 
Hypothesis 6: Using AND-logic, the PMs 1-E(β) and √RP both reach maxima when between 2 and 4 terms are used; but 

steadily decrease when OR-logic is used.   
Hypothesis 7: The area defined by the triples of search expressions written out in Section 4.1.1, Construct 7, Note 4, 

increases monotonically and almost linearly. 
Of these, perhaps Hypotheses 1-3 and 6 would seem to be of most practical interest.  Hypothesis 6 appears to conform with 
everyday observations that database searchers’ tend to search with a small number of search terms: see, e.g. [12]. 
 
Further suggestions 
Although the approach to describing retrieval effectiveness we have described has been illustrated for retrieval against a fixed set 
of ‘relevant documents’, there is no reason why it can not be used to describe retrieval where the searcher is a ‘learning searcher’, 
i.e. where the relevance criteria vary with successive searches of the database, i.e. where the searcher adapts his or her needs to 
the information retrieved by each search expression.  Spink and her colleagues [18] refers to such studies as ‘longitudinal 
studies’.  Search expression adaptation is of course associated with much published work in the relevance feedback area, 
traceable to Salton’s work in this field the 1960s, and with the concept of document retrieval as part of a heuristic process (see, 
e.g. [2]).19   
In regard to formal methodology, what would seem to be helpful is a more rigorous development than we have offered here, one 
which will recognise the combinatorial aspects of term selection and logical operator selection. 
 
 
Software written by the author to support the type of analysis described in this paper is freely available on a non-commercial 
basis from the author by e-mail.  Offers of collaboration in the development of the code (in C++) would be welcomed. 
  
Acknowledgement:   Criticisms by referees of an earlier version of this paper are acknowledged with thanks. 
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