

University of Veszprem
Hungary

DATA STRUCTURES

AND

ALGORITHM ANALYSIS

lecture notes

Sandor Dominich
Adrienn Skrop
Maria Horvath

2001.

Mathematics Review

1. Exponents

2. Logarithms

3. Series

 Geometric series

()

1

2

222
2

+

−

+

=+
≠=+

=

=

=

nnn

nnnn

bccb

cb
c

b

cbcb

aaaa
aa

a
a
a

aaa

compromise ajust is log
lgln :Note

12log
01log

log
log

log

logloglog

logloglog :properties
log

loglog typically

2

2

,

a
b

b

ba
b
a

baab
baxb

c

c
a

x
a

=
=

=

−=

+=
=⇔=

=

1
122 ,2

1
1

1

0

1

0

−==

−
−=

+

=

+

=

∑

∑
nn

i

i

nn

i

i

a

a
aa

∞→=
−

≤<< ∑
=

n
a

aa
n

i

i ''
1

1 ,10
0

econvergenc if only valid :Note
...

| ...1
432

32

−






=++++

⋅=++++
aSaaaa

aSaaa

 Arithmetic series

 Harmonic number

4. Proofs

1. Proof by induction

We want to prove p(n)

 1. Prove that p(n) holds for a base case p(n0)

 2. Assume p(n) holds, n > n0

 3. Prove p(n) ⇒ p(n+1)

 Fibonacci numbers

F0 = 1, F1 = 1 (by definition)

F2 = F1 + F0 = 2

Fi = Fi-1 + Fi-2, i ≥ 2

a
S

−
=

1
1

2
2
i :HW

1i
i

=∑
∞

=

()

()()
6

121
2

1

1

2

1

++=

+=

∑

∑

=

=

nnni

nni

n

i

n

i

nHn

const

n
i

Hn

n

n

ne

n

i

ln
constant sEuler' 57721566.0

:

log1
1

≈
=

+== ∑
=

γ
γ

γ

1,
3
5 ≥





< iF

i

i

2. Proof by contradiction (indirect, reductio ad absurdum)

 To prove: P

1. Assume that דP holds

2. If we contradict some known property, then:

3. P (must be true)

Ex.:

P: there are infinitely many primes

 P: there are a finite number of primesד

 P1, P2, …, Pn

 P1+ P2 +… + Pn

 N = P1 ∙P2 ∙… ∙ Pn + 1

 N > Pi, i = 1,…,n

 N is not prime contradict s

 rem. (N : Pi) = 1 ≠ 0 Fundamental Theorem of Arithmetic

 MUST conclude: דP is false ⇔ P is true

Ex.: √2 irrational , √2 ∈ II = RR \ QQ

 P: √2 irrational

 P: √2 rationalד

 √2 = a / b, (a, b) = 1

 2b2 = a2 a = 2c

 b2 = 2c2 contradiction
 b = 2d ⇒ (a, b) ≠ 1

Note: דP

 P: The sun is shining

 P: The sun is NOT shiningד

 It is not the sun that is shining

 P: The rain, whose mean value in South Africa exceeds that of

 Central Europe in august, is only half welcome in parts of a rain

 forest.

∀ε ∃ Sε | xn – xm | < Sε , ∀ n > m

3. Evaluate

()∑

∑∑

=

∞

=

∞

=

=−
n

i

i
i

i
i

ni

i

1

2

00

12 Prove

4
 ;

4
1

Asymptotic notation

ΘΘΘΘ - notation

 Θ: asymptotically tight bound
 Ex.:

HW: 6n3 ≠ Θ (n2)

Property:

c = const = Θ(n0) = Θ(1)

O notation

()() () () () (){ }021021

def
,0:,, nnngcnfngcnccnfng >∀≤≤≤∃=Θ

() ()()
() ()()ngnf

ngnf
Θ=
Θ∈

f(n)

c1g(n)

c2g(n)

n0

)()(

)(

3,
2
1,

6
1

3
2

)(

2

2
2

2
1

021

2

nnf
ncnfnc

ncc

nnnf

Θ=

≤≤

===

−=

)()(

)(
0

d

i
d

i
i

nnp

nanp

Θ=

= ∑
=

n2 = O(n2)

n = O(n2)

 O upper bound for f(n)

Ω - notation

 Ω lower bound for f(n)

cg(n)

f(n)
))(()(ngOnf =

{ }00

def
),()(0:,)())((nnnfncgncnfng ≥∀≤≤∃=Ω

f(n)

cg(n)

n0

))(()(ngnf Ω=

nlogn

n2 n3

{ }00

def
),()(0:,)())((nnncgnfncnfngO ≥∀≤≤∃=

 Ex.:

i, S: integers running time

 S: = 0 measure effective time

 FOR i = 1 to n algorithm analysis

 S = S + i * i

 1 1 1 declaration takes no time

 assignment: 1 unit

 FOR: 1 unit n + 1 unit

 1 + 1 + n + 1 +3 = n + 6 = Θ(n) = O(n)

Similarly (loop in loop):

 FOR

 ….

 FOR

 ….

 Θ(n2)

1. Calculate:

2. Prove:
 a,

9
252,2

3
51,1

1,
3
5

<==

<==

≥




<

i

i

i

i

Fi

Fi

iF

1

1i 3
5F

+

+ 




<

i

11211

1ii1i 3
5

25
24

3
5

5
3

5
3

3
5

3
5

3
5FFF

+++−

−+ 




<⋅





=















+





=





+





<+=

iiiii

2
1...

8
3

4
2

2
1

21

⋅+++=

=∑
∞

=

S

i
i

i

2
1

2

2
2
1

2
1

2
1

...
8
3

4
2

2
1

...
16
1

8
1

4
1

...
16
3

8
2

4
1

2

↑

∞

=

=⇒=




 +−

+++=

+










+++

+++=

∑ SSS

S

i
i

b,

 c,

3.

()

()

()() () ()
2

12
2

1
2

21

2
1

111

2
1

1

1

1

1

+++=++=

+=

=⇒=

+=

∑

∑

∑

+

=

=

=

nnnnni

nni

n

nni

n

i

n

i

n

i

()()

()()()

() ()() ()

() ()

()() igaz672322
6

672)1(

6
6612)1(1

6
12)1(

1
6

1211

6
3221 :1n

6
3211 :1

6
121

2

2

22

1

2
1

1

2

1

1

2

1

2

⇒++=++

+++=

=++++=




 ++++=

=++++=++=

+++=+

⋅⋅==

++=

∑∑

∑

∑

=

+

=

+

=

=

nnnn

nnn

nnnnnnnn

nnnnnii

nnni

n

nnni

n

i

n

i

n

i

n

i

()

() () 22

11 1

1

2

2
121212

12

nnnnnnni

ni

n

i

n

i

n

i

i

n

i

=−+=−+=−=−

=−

∑∑ ∑

∑

== =

=

4.

121 :3

2

3

1

1

2

1

=−===

−=

∑

∑

=

−

=

FFn

FF

i
i

n

n

i
i

()

() () 222222

2

2

2

1

3

1
111

1

2
2

1

2
11

1

2
211

1

1

1

1

1

2

1

++=+−+−=−+=−

++=++=

−=

−=

∑ ∑

∑∑∑∑

∑

∑

−

=

−

=
−−+

−

=
−

−

=
−

−

=
−−

−

=

+

−

=

−

=

n

i

n

i
iinnnnn

n

i
i

n

i
i

n

i
ii

n

i
i

n

n

i
i

n

n

i
i

FFFFFFF

FFFFFFF

FF

FF

Asymptotic notation in equations

n = Θ(n2) n = O(n2)

2n2 + 3n + 1 = 2n2 + Θ(n) There exists some functions such that the equation holds.

2n2 + Θ(n) = Θ(n2)

O, Ω, Θ upper bound: O tight, o loose

o, ω lower bound: Ω tight, ω loose

Properties

 Transitivity

 (f(n) = . (g(n)) Λ g(n) = . (h(n))) ⇒ f(n) = . (h(n))

 where . ∈ {O, Ω, Θ, o, ω}

 Reflexivity

 f(n) = . (f(n))

 Symmetry

 f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n))

()gf
ng
nf

gof
ng
nf

n

n

ω
=
∈

∞=

=
∈

=

∞→

∞→

g(n)an rapidly thmuch grows f(n)
)(
)(lim

)(

f(n)an rapidly thmuch grows g(n) 0
)(
)(lim

Analogy between asymptotic notation and real numbers

f(n) = O(g(n)) a ≤ b

f(n) = Ω(g(n)) a ≥ b

f(n) = Θ(g(n)) a = b

f(n) = o(g(n)) a < b

f(n) = ω(g(n)) a > b

 Trichotomy

 Dichotomy: Boolean logic

 Trichotomic: three different values

 Trichotomy: ∀ a, b ∈ RR:: exactly one of the followings holds:

 a < b a = b a > b

 Note: for every real number holds, and we can prove it.

 Asymptotic notation: trichotomy doesn’t hold

 Not any two functions can be compared in an asymptotic sense.

 Ex.: f(n) = n

 g(n) = n 1+sin n

They can’t be compared.

 f(n) = n

 g(n) = n sin n

They can be compared.

f(n) is a tight upper bound for g(n).

Floor, ceiling

 Floor of x ∈ RR: x : the greatest integer less than or equal to x

 Ceiling of x ∈ RR: x : the least integer greater than or equal to x.

 x – 1 < x ≤ x ≤ x < x + 1

 ∀ n ∋ ZZ: n / 2 + n / 2 = n

Rate of growth of polynomials and exponentials

 Any exponential grows faster than any polynomial!

Series

Stirling approximation:

Fibonacci numbers and the Golden ratio

Fi = Fi-1 + Fi-2, i ≥ 2, F0 = 0, F1 = 1

{ } ()∞∈ℵ∈

=
∞→

,1,0\

0lim

an
a
nx
xx

()

() 1...,
32

1ln

1

1

1,0

1,11

1

!

32

2

2

0

lim
<−+−=+







+=

+≈

Θ++=→

≤++≤≤+

+≥

=

∞→

∞

=
∑

xxxxx

n
xe

xe

xxex

xxxex

xe

i
xe

n

n

x

x

x

x

x
i

i
x

n
nn

n

e
nnn

e
nn

ne
nnn

12
1

 2! 2

11 2!

+






≤≤


















Θ+





=

ππ

π

 | | |

 A P B

 The relation between the Fibonacci numbers and the Golden ratio.

 Fibonacci numbers grow exponentially.

Summations

Sequence: a1,…, an (finite)

Series: (infinite)

 If it exists we have convergent series (else divergent).

 Linearity

 Differentiation

 Telescoping

 Telescoping series (sums)

()
61803.0

2
15,1

15
2

≅−==

−=

=

APAB

ABAP

PB
AP

AP
AB

2

ˆ
2

51ˆ,
2

51

ii

iF Φ−Φ=

−=Φ+=Φ

∑
∞

=

=+++
1

1
i

in aaa

∑
=∞→

n

k
kn

a
1

lim

()() ()




Θ=Θ

+=+

∑∑

∑∑∑

==

===

n

k

n

k

n

k
k

n

k
kk

n

k
k

kfkf

bacbca

11

111

)(

()2
0

0

1

1,
1

1

x
xkx

x
x

x

k

k

k

k

−
=

<
−

=

∑

∑
∞

=

∞

=

012312011
1

...)(aaaaaaaaaaaa nnnk

n

k
k −=/−++/−/+/−/+−/=− −−

=
∑

Products

Bounding summations

 By induction

 Prove:

 Assume:

 By bounding terms

() nkkkk

n

k

n

k

11
1

11
1

1 1

1

1

1

−=






+
−=

+ ∑∑
−

=

−

=

∑∏
==

=



 n

k
k

n

k
k aa

11

lglg

()

1,11
0 : valueInitial

33:

33

0

0

≥⋅≤
=

⋅≤∃

=

∑

∑

=

=

cc
n

cc

O

n

k

k

k
n

k

k

1

1

1

1

0

1

0

3

31
3
1

33

333

+

+

+

+

=

+

=

⋅≤

⋅




 +=

+⋅≤

+= ∑∑

n

n

nn

n
n

k

k
n

k

k

c

c
c

c

∑

∑

∑

=

=

=

≤

≤

=

n

k

n

k

k

kk

n

k

k

nk

naa

aaa

1

2

max
1

max
1

 Ex.

max,

 By splitting

 n even

 By integrals

 |
 m-1 m m+1 n+1

()2

2

1
2

2

1

1
2

1

2

1

4

0

2
0

n

n

n

kkk

n

nk

n

k

n

nk

n

k

n

k

Ω=

+≥

+≥

+=

∑∑

∑∑ ∑

+==

+== =

() () ()

∫∑

∫∑∫
+

=

+

=−

≥

≤≤

1

11

1

1

1 Ex.
nn

k

n

m

n

mk

n

m

x
dx

k

dxxfkfdxxf

Elementary Data Structures

Data should be organised into stuctures so that it can be processed as required by the problem

Elementary (Basic or fundamental):

There are just a few elementary data structure. All the other rely on the elementary data structures.

STACK

a) LIFO (Last in, first out) LIFO
b) FIFO (First in, first out)

The stack is organised into locations: address
p: pointers
stack pointer: the address of the next available
 locations

Note:
p: the address of the top which isn’t empty
 (another view)

Two basic operations:

• write: PUSH: D (new data) → p (location) ; p → p+1
• read: POP: p → p-1; p(location) → D

Note:

In theory : the stack is infinite
In practice: finite
 it’s impossible to increment the stack pointer: overflow: the stack is full

 before writing overflow check is needed

Note:
before read: check whether the stack is empty (underflow check) (we want to extract a data from the empty stack)

Application:

• management of teh main memory
 when the OS is loaded

• compilers: evaluating expressions

p

locations

address

7

B

A
1

2

3

4

FIFO

it’s called a QUEUE

 Head Tail

 Locations

It is infinite at both ends. Tha data is written only from one direction at one end.
Tail: where we write the data in
Head: where we read the data out

The space we can allocate for a QUEUE is finite.

• overflow check: ENQUEUE
• underflow check: DEQUEUE

write: ENQUEUE
read: DEQUEUE

Application:

• modelling the dataflow in online processing (pressure, temperature)

ARRAY

1 dimensional – sequence: a1, a2, a3,…, an

 2 dimensional – matrix: (ai,j)n×n
 higher dimensional – matrix of matrices

Usage: represent stack, queue, list…

LIST

L :E1, E2, …, Ei,…En the elements of the list
∀ Ei: Di pi data and pointer fields
pi can contain several pointers: pi

j , j∈ {1,…}

j=1 single linked list

 D1 p1 D2 p2 ... Dn NIL

 E1 E2 En

NIL: no more list elements
p1: the address of E2
pi: the address of Ei+1
Important: the order in wich the elements are linked through the pointers (the logical order) not necessarily the same as the

physical order.

A B

Example: Application:
 to store data on disk (files)
 element = track : the elements are stored on available tracks, ??????????

Operations:
INSERT: write a new element into the list

 a. front of the first element of the list

 E1 E2 En

E

pointer of E points towards E1

b. after the last element

 E1 E2 En

 E
 Replacing NIL with a pointer to E

 c. between the existing elements

 … …
 NIL

E1 Ei Ej En

 E

Rearraging the pointers.

…
NIL

…
NIL

SEARCHING: Θ (n)

 D1 p1 Di pi Dn NIL

 E1 Ei En

D : to be searched sequentially: compare D with Di i=1,…
 we either find
it or not

DELETION: delete an existing element

 D
 NIL

 E1 Ei Ei+1 En

 D: find the element contains D and take it out from the list

a) searching
b) deletion Ei

… D
 …

 Ei-1 Ei Ei+1

Logical deletion: just the pointers are rearranged, not physical deletion

Example: array representation of a list

 A B C NIL

 E1 E2 E3

 two dimensional array

 1 2 3

A

B C

(1,2)

(1,3)

Data

Pointers

 1

 2

Doubly linked list

D1 D2 Dn

E1 E2 E

Sentinel: contains no data , points to the first element

Circular list

 Circular singly linked list

 D1 p1 D2 p2 Dn

E1 E2 En

The sentinel always tells us which is the first element of the list.

TREE

 Mathematically: acyclic connected graph

 ROOT level 0: parent of its children, has no parent

 level 1: children of the root, parents of level 2

 level 2: children of the nodes of level 1, parents of
 level 3
……………………………… …
 ….. last level: leaves: have no children

Binary tree: at most two children (except the leaves)

 ROOT number of levels: HIGHT (h) of the tree

 number of leaves ≤ 2h

left child
 right child

Implementation: by means of lists

Example:
 MULTI-LIST
 (linked)

 NIL NIL NIL

 NIL NIL

Binary search tree

 5 Every key in every left subtree is at most the key of
 its root.
 3 7 Every key in every righta subtree is at most the value
 of its root.
 2 5 8

 Binary search tree property

WALK:

 R INORDER: L Root R
 PREORDER: Root L R
 L R POSTORDER: L R Root

Example:
 INORDER: 2 3 5 5 7 8 ascending order of keys
 PREORDER: 5 3 2 5 7 8
 POSTORDER: 2 5 3 8 7 5

Application:

(A+B)*C-D mathematical form (usual)

Evaluation of an arithmetic expression :

• parentheses precedence rules
• operators

form: Pohsh: no parentheses
 no need the check the precedence of the operators
 −

 postorder walk: AB+C*D- POSTFIX POLISH FORM
 * D

 + C

 A B

Application:
SORTING: arrange data

numbers 1, 7, 6 1, 6, 7
 Comparison

Decision tree (specialised binary tree)
a1, a2, a3
 h=?
 a1:a2
 How many comparisons needed to sat the
 ≤ >
 numbers?

 a2:a3 a1:a3
 Lower bound for comparison – bored
 ≤ >
 sorting

 a1:a2:a3 . . .

 n! : number of leaves
 n! ≤ 2h

 h ≥ log (n!)

HASHING

 Hash table

 U 0

 •K1 •K2 1 SLOTS (locations): every slot is

 •K 2 identified by a code (e.g., serial number)

 :

 .

 m-1

U: Universe of all possible key values (from where the keys can take values).

K1, K2, K: keys, they are used to identify records.

Hash function: h, meets the key values with the slots.

h: U → {0, 1, …, m-1}

h: K → h(K)

Collision: h(K1) = h(K2) when K1 ≠ K2

 Resolve: chaining, data that collide are chained.

 Sentinel

Complexity

Analysing hashing with chaining.

Search: Θ(1+α)

n: number of keys

K1 ….. K2 …..

m: number of slots

Search:

 K

 h(K) Θ(1)

 search in the list Θ(α)

 Θ(1) + Θ(α) = Θ(1 + α)

 Assume: n = O(m) (as many keys as slots)

 The search takes constant time.

 Uniform hashing: any given key is equally likely to hash into any of the slots.

Probability:1 / m

Application

• Spelling checker

• Compilers

• Game – playing

• Graphs

Hash function

What makes a good hash function? (Uniform hashing is ensured 1 / m)

Usually we do not know the distribution of the key values → difficult to design good hash function.

In practice: spread the key values as much as possible.

) of in term made is analysis (thefactor load:
m
n

list ain elements ofnumber average:

αα =

m
n

)1()(O
m
mO

m
n

===α

 Division method

 h(K) = K mod m

 It does not work well in every case → m = 2p

Reminder p bits

p = 2 m = 22

 0, 1, 2, 3 2 bits

 K = 5 3 bits

 M should be a prime near α

 n = 2000, α = 2000 / 3

 Multiplication method

 h(K) = m((KA) mod 1)

 0 < A < 1, A = 0.618033 (Golden section) → good results

 Uniform method

 h(K) = Km

 K – uniform distribution [0, 1]

 Practically and theoretically good function

Interpreting strings as numbers

SOUNDEX CODING
RADIX 128

 C1 C2 …Cn ASCII

 C1 C2 …Cn number 0 ≤ Cj ≤ 127

 Ex. p = 112, t = 116, pt = 116 + 128 ⋅ 112 = 14452

1 0 1

Universal hashing

There are h hashing functions s.t. there exist key values that more than one will be hashed into the

same slot.

Any fixed hashing is valid.

H = {h1, h2, …, hr} set of hash functions

For any random hi → uniform hashing

Statement

If h is chosen from a universal collection H of hash functions and is used to hash n keys into a hash

table of size m, where n ≤ m, then the expected number of collisions involving the particular key x is

less than 1.

Proof

H universal: probability for y and z to collide is 1 / m (by definition)



 ∀=

=
otherwise0,

,),()(,1
 : variablerandom aLet yz

zyzhyh
cc yz

[]
()

[] 











=

==

=

∑ n
n

n

nn

zy

xpE
xPP

m
cE

ξ
ξξ ,

1
,

Let cx be the number of collisions involving key x.

 cxy1

 cxy2

 cxyn-1

Construction of a universal set H.

 m – prime

 given key x

 decompose x = x0 x1 …xr , value xi < m

 {0, 1, …, m-1}, let a be a sequence of slots

 a = <a0 a1 …ar>, every ai is chosen randomly from the set {0, 1, …, m-1}

Theorem

The set H is universal.

y1
x

y2

yn-1

[]

[]

[]
m

cE

m
cE

m
cE

xyn

xy

xy

1

1

1

1

2

1

=

=

=

−

[] [] 111 <−=== ∑∑ m
n

m
cEcE

yy
xyx

[]















=





++=

∑∑
−

i
i

i
i

xynxyx

EE

ccc

ξξ

11 ...

()

{ } set universal the

mod
0

!
a

a

i

r

i
ia

hH

mxaxh

=

= ∑
=

Proof

As many collisions as the number of equations.

As many equations as different ai.

H(n m) n, m should be comparable.

Choose at random any time when hashing should be done, apply h.

Application

Data bases
Hash table + B- tree

Not easy to estimate n

Not easy the choice of h.

()

()

() ()

()

() () []myxayxa

myaxa

myamxa

yhxh
yxyx

yyyy

myayh

mxaxh

yx

ii

r

i
i

i

r

i
ii

r

i
i

i

r

i
ii

r

i
i

aa

r

i

r

i
ia

i

r

i
ia

mod

mod

modmod

...

mod

mod

1
000

00

00

00

10

0

0

−≡−

≡

=

=
≠≠

=

=

=

≠

∑

∑∑

∑∑

∑

∑

=

==

==

=

=

mm
m

mH
m

r

r

r

r

1
1

1

=

=

+

+

ESTIMATION OF COMPLEXITY

Running time: the time required for a computer to execute a program.

Running time dependes on the following factors:

− CPU: the higher the speed, the quicker the computer.

− Memory: main and secondary memory available to execute the program.

− Input data: size, type, operations.

− Software: compiler, operating system, etc.

− Algorithm (based on which the particular program is written).

Example: a1 + a2 + a3 + a4

S = 0 S = 0
S = S + a1 FOR i = 1 TO 4

S = S + a2 S = S + ai

S = S + a3

S = S + a4

The asymptotic notation is a way to express how bad (slow) or good (fast) an algorithm is.

Expression of complexity → we get a measure → to express the 'character' or behaviour of an

algorthm

 → comparison of algorthms in term of complexity.

We can decide which algorithm is better or we should choose.

Note: the complexity will not guarantee that the algorithm will really be faster or that the computer

will always execute the program faster, because physical running time, as seen above, depends on

other factors, too.

Estimation of the complexity of an algorithm:

1. Assignment 1 umit Ex.: S = 0

 Operations 1 unit each

2. Consecutive statement sum of each

3. Loop: time required to evaluate the body multiplied by the number of iterations

4. Nested loop: inside multiplied by the product of iterations

5. IF: test + max (THEN, ELSE)

This technique can over−estimate (ex. 5), but it will never under−estimate the complexity.

SORTING

To arrange given data according to given criteria.

Ex.: 1. ci, i = 1, …, n

 αj, j = 1, …, m (criteria)

 arrange ci taking into account every αj

2. List of names → alphabetic order
3. Temperature values → ascending or descending order

4. Sorting a1, a2,…,an input data

 criterion: ascending (descending)

BUBBLE SORTING
 Main idea: find the smallest and put it on the top

 find the second smallest and put it next to the top one …

Ex. 2, 1, 7, 6 Fix the first number and compare it with all the other. If

 wrong order swap and change.

 1, 2, 7, 6

 Repeat from the second position.

 2, 7, 6 7, 6 → 1, 2, 6, 7

a1, a2, …, ai, aj…,an

FOR i = TO n – 1

 FOR j = i + 1 TO n
 IF ai > aj THEN swap (ai, aj)

2 · (n - 1)(n - 1) = O(n2)

1

2 6 7

Best case: the input is already in the right order (no swap) → O(n2)
Worst case: all the numbers are in the wrong order → O(n2)

Average case: the numbers are given at random (typical case)

Bubble sorting (comparison-based): O(n2)

Comparison-based sorting: Ω(n log n)

 O(n log n)

QUICK SORTING
The fastest known method.

Divide and conquer philosophy

 A(p, q), ∀ x ≤ q

A(p…r)

 A(q + 1, r), ∀ y ≥ q

q: computed value

Ex. 9, 2, 11, 20, 7

Q: pivot =  (9 + 7) / 2 = 8 → not necessarily belongs to the sequence

7, 2 11, 20, 9

q = 4 q = 10

2 7 9 11, 20

 q = 15

2 7 9 11 20

QUICKSORT (A, p, r)

IF p < r THEN

 q ← PARTITION (A, p, r)

 QUICKSORT (A (p, q))

 QUICKSORT (A (q + 1, r))

Initial call: QUICKSORT (A, 1, length(A))

PARTITION (A, p, r)

x ← A(p), i ← p – 1, j ← r + 1

WHILE TRUE DO

 REPEAT j ← j – 1 UNTIL A(j) ≤ x

 REPEAT i ← i + 1 UNTIL A(i) ≥ x

 IF i < j THEN SWAP (A(i), A(j))

 ELSE RETURN j

Recurrence: resolved by telescoping

T(n) = nc + nlogn

T(n) = O(nlogn) average (and best) case

Worst case: O(n2)

Worst case: one element / region

()

log
1
1

1
1

)1(
2

)2(
.
.
.

1

4

4

2

)(

1

2

2)(

|:
2

2)(

2
2)(

n)T(
n

T(n)

TT

n

nT

n
nT

n

nT

n
nT

nnnTnT

nnTnT

+=+

























+=

+







=

+







=

+




=

Θ+




=

()∑ ∑
∑

Θ=Θ=Θ=

=Θ+=

+
















Θ+=

−Θ+−=−
Θ+−=

=

kknnT

kTnT

TT

nnTnT
nnTnT

n

k

)()()(

)()1()(

)2()1()2(

.

.

.
)1()2()1(

)()1()(

2
2

SEARCHING

There may be different situations where searching is performed

SEQUENTIAL SEARCH

Given a1, …, ai, …, an (numbers / characters: objects to be searched)

Find: x

(naïve or brute force search or straight search)

It is in fact one loop:

FOR i = 1 TO n

 IF x = ai THEN STOP

O(n)

Note: this kind of search is very simple (primitive),

but what is if ai is a matrix?

 records of a file?

The comparison is more complicated here. But in principle it is very simple.

RANDOM SEARCH

Introduce some sort of probability.

Given a1, …, ai, …, an to be searched.

Find: x

Coin: probability element

 If head: search from 1 to n.

Flip a coin

 If tail: search from n to 1.

Two sequential searches are combined, applied together.

Assume: x = ai (ith position)

 The coin is fair: the head and the tail occur with equal probabilities.

If head: i comparisons to find x.

If tail: n – i + 1 comparisons to find x.

½ i + ½ (n – i + 1) = (n + 1) / 2 better than n. (Average the two case.)

In average we need (n + 1) / 2 comparisons rather than n.

The order of the elements is irrelevant (no need for pre-sorting) in

− Sequential search,

− Randomized search.

BINARY SEARCH

It is very quick and used almost everywhere.

The elements to be searched are sorted.

Given a1 ≤ … ≤ ai ≤ … ≤ an

Find: x

Idea: guess the number I am thinking at

Ex. 2 3 7 | 8 9 | 10

 Find: 9

− Half the sequence.

− Compare the last element with x.

a1, …, an

x

low: leftmost element in the half = 1

high: rightmost element in the half = n

 REPEAT

 mid = (low + high) DIV 2

 IF low > high THEN mid = 0

 ELSE

 IF a(mid) < x THEN low = mid + 1

 ELSE high = mid – 1

 UNTIL x = a(mid)

 O(log n) , very fast.

 Note: n finite

 If n infinite then binary search: div 2m

 It may not happen in practice, just in theory.

Note:

1. Will the search work when all elements are given at once (at the same time)?

2. Will the search work when all elements are given on line (one by one)?

 1. 2.

Sequential search YES YES

Randomized search YES NO

Binary search YES NO

In every case we assume that we have just one processor to do the job.

PARALLEL BINARY SEARCH

It speeds up the binary search.

P processors with shared memory (PRAM parallel RAM).

CREW: Concurrent Read Exclusive Write

Given the elements a1, …, ai, …, an sorted.

Find: x

Divide the sequence into p + 1 parts:

 a1, …, ai1 | ai1+1, …, ai2 | …, aij | …, an

x is compared with the boundary elements (or the leftmost or the rightmost)

in parallel: processor j compares x with the jth boundary

 processor j sets a variable cj: 0, if x > aij

 1, otherwise

 n
n

n

n

log

1

0

2

.

.

.
2

2

 Thus: ∃ s: cs = 0 Λ cs + 1 = 1 (to locate part)

 Repeat recursively until x = aij

Complexity:

 O (logp + 1 n) better than O(log n), if p > 1

Note: PBS doesn’t online

 PBS works offline

STRING SEARCHING (straight search, naïve, brute force)

Idea:

 text (string of characters) of length n, i (index) pointer

 find: pattern of length m, j

Comparisons from left to right

− match: both i and j are incremented

− mismatch: reset j to the beginning of the pattern

 i set to the position corresponding to moving the pattern to the right one

 position

Ex. 3 2 4 5 6 text: n = 5

 4 5 pattern: m = 2

3 2 4 5 6

()

()

  () 1
1

2

.

.
1

 .

1

2
n

PBS BS

log

2

00

=




+

+

+

nn p
nn

p
n

p
n

4 5

| →

 4 5

 | →

 4 5

O(n · m)

KNUTH−−−−MORRIS−−−−PRATT ALGORITHM

Given text: n, i

 pattern: m, j

Both pointers are incremented by 1 as long as there is a match.

Mismatch at position k: j is reset and comparison is restarted.

I. 3 2 3 4 5 i = 1

 3 4 j = 1

II. 3 2 3 4 5 i = 2

 3 4 j = 2

III. 3 2 3 4 5 i = 2

 3 4 j = 1

IV. 3 2 3 4 5 i = 3

 3 4 j = 1

O(n + m)

BOYER−−−−MOORE ALGORITHM

text: s1, m

pattern: s2, m

Idea: the pattern is searched from right to left, while it is moved from left to right an appropriate

number of positions.

 I. 3 2 7 4 5 6
 4 5 mismatch: no matching characters between pattern and text → we move the

 pattern m position to the right

 II. 3 2 7 4 5 6
 4 5 mismatch: align the four

 III. 3 2 7 4 5 6
 4 5 stop

 O(n/m) really very fast.

Application: word processing (spelling checker)

SIGNATURE FILES

Given text

Every word is hashed (transformed) into a string of bits. (Ex. radix 128, soundex coding)

synonym: in hashing sense, not grammatically

hash table: The locations contains the possible bit representation

 → sector (block)

Find word x:

− x is transformed into a string of bits,

− the hash table is pre−sorted,

− x is searched using binary search in the hash table or better hash function,

− we get a block address on the disk, we find the word on that block somewhere,

− we apply string searching within the block

maximum−sized file

relatively constant

bibliographic DB searching

INVERTED FILE

Huge file (DB) such as in a library, WWW

Search engines work as this: locate a word (not when the Web page is returned)

Crawler (programme): scans the Web all the time. Builds (updates) an inverted file.

Inverted file:

 wi: words on the Web

 Records URL−s: containing that word

 − search (whether the word exists in

the inverted file): B−tree (to

implement the inverted file)

− sorting (the inverted file is updated every time

a new word appears)

When we enter a word to search:

− The search engine locates the word by searching the inverted file → string searching.

− If the word is found in the inverted file then  depending on the retrieval techniques  the

document / URL will be presented or not (this depends not solely on whether the word is present

or not).

w1 URL1

w2 URL2

. .

. .

wn URL n

	DATA STRUCTURES
	AND
	ALGORITHM ANALYSIS
	lecture notes
	Sandor Dominich
	Adrienn Skrop
	Maria Horvath
	2001.�Mathematics Review
	O notation
	
	Similarly (loop in loop):

	Asymptotic notation in equations
	O, O, T upper bound: O tight, o loose
	
	
	Properties

	Transitivity
	
	Floor, ceiling
	Series
	Summations
	Products

	By induction

	Elementary Data Structures
	HASHING
	
	Complexity
	Application

	Hash function

	Reminder p bits
	Interpreting strings as numbers

	SOUNDEX CODING
	Universal hashing
	Statement
	Proof
	Theorem
	Proof
	Application

	Data bases

	S = 0				S = 0
	SORTING
	To arrange given data according to given criteria.

	2. List of names (alphabetic order
	FOR j = i + 1 TO n
	Best case: the input is already in the right order (no swap) (O(n2)
	SEARCHING
	There may be different situations where searching is performed
	Find: x
	IV.	3 2 3 4 5		i = 3

	I. 	3 2 7 4 5 6
	II. 	3 2 7 4 5 6
	III. 3 2 7 4 5 6

