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1. Exponents 

 
2. Logarithms 
 

 
3. Series 
  
 Geometric series 
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 Arithmetic series 

 
 Harmonic number 

 
4. Proofs 
 

1. Proof by induction 

We want to prove p(n) 

 1. Prove that p(n) holds for a base case p(n0) 

        2. Assume p(n) holds, n > n0 

             3. Prove p(n) ⇒  p(n+1) 

 

 

      Fibonacci numbers 
 
F0 = 1, F1 = 1 (by definition) 

F2 = F1 + F0 = 2 

Fi = Fi-1 + Fi-2, i ≥ 2 
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2. Proof by contradiction (indirect, reductio ad absurdum) 

      To prove: P 

1. Assume that דP holds 

2. If we contradict some known property, then: 

3. P (must be true) 

Ex.:  

P: there are infinitely many primes 

 P: there are a finite number of primesד  

  P1, P2, …, Pn 

  P1+ P2 +… + Pn 

  N = P1 ∙P2 ∙… ∙ Pn + 1 

  N > Pi, i = 1,…,n 

 N is not prime              contradict s 

  rem. (N : Pi) = 1 ≠ 0   Fundamental Theorem of Arithmetic 

  MUST conclude: דP is false ⇔ P is true 

 

Ex.: √2 irrational , √2 ∈  II  =  RR  \  QQ 

 P: √2 irrational 

 P: √2 rationalד 

 √2 = a / b, (a, b) = 1 

 2b2 = a2        a = 2c 

            b2 = 2c2                                       contradiction 
                 b = 2d ⇒  (a, b) ≠ 1 

 

Note: דP 

 P: The sun is shining 

 P: The sun is NOT shiningד     

            It is not the sun that is shining 

 



 P: The rain, whose mean value in South Africa exceeds that of  

              Central Europe in august, is only half welcome in parts of a rain  

               forest. 

∀ε  ∃  Sε   | xn – xm | < Sε , ∀  n > m 

 

3. Evaluate 
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Asymptotic notation 
 
ΘΘΘΘ - notation 

                                          
 
 

 
 
 

   Θ: asymptotically tight bound 
   Ex.:  

  
HW: 6n3 ≠ Θ (n2) 
 
 
 
Property:  

 
c = const = Θ(n0) = Θ(1) 

 
 
O  notation 
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n2 = O(n2) 

n = O(n2) 

 
 
 
 
 
 
 
 
 
 
 
       O upper bound for f(n) 
 
Ω - notation 

 
 
 
 
 
 
 
 
 
 
 
 
      Ω lower bound for f(n) 
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       Ex.:  

 

i, S: integers                                                 running time 

   S: = 0                                                            measure effective time 

         FOR i = 1 to n                                                    algorithm analysis 

                  S = S + i * i 

                      1    1   1                                        declaration takes no time 

           assignment: 1 unit 

           FOR: 1 unit   n + 1 unit 

           1 + 1 + n + 1 +3 = n + 6 = Θ(n) = O(n) 

Similarly (loop in loop): 

       FOR 

               …. 

                   FOR 

              …. 

       Θ(n2) 

 

 
 

 



1. Calculate: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Prove: 
 a, 
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b, 
 
 
 
 
 
 
 
 
 
 
 c, 
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Asymptotic notation in equations 
 
n = Θ(n2)        n = O(n2) 

2n2 + 3n + 1 = 2n2 + Θ(n)   There exists some functions such that the equation holds. 

2n2 + Θ(n) = Θ(n2) 

 

O, Ω, Θ            upper bound: O tight, o loose 

o, ω                  lower bound: Ω tight, ω loose 

 

 

 

 

 

 

 

 

Properties 
 
 Transitivity 

 ( f(n) = . (g(n)) Λ g(n) = . (h(n)) ) ⇒  f(n) = . (h(n)) 

 where . ∈  {O, Ω, Θ, o, ω} 

 

 Reflexivity 

 f(n) = . (f(n)) 

 

 Symmetry 

 f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n)) 
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Analogy between asymptotic notation and real numbers 

 

f(n) = O(g(n))  a ≤ b 

f(n) = Ω(g(n))  a ≥ b 

f(n) = Θ(g(n))  a = b 

f(n) = o(g(n))  a < b 

f(n) = ω(g(n))  a > b 

 

 Trichotomy 

 Dichotomy: Boolean logic 

 Trichotomic: three different values 

 

 Trichotomy: ∀ a, b ∈  RR::  exactly one of the followings holds: 

  a < b   a = b   a > b 

 Note: for every real number holds, and we can prove it. 

 Asymptotic notation:  trichotomy doesn’t hold 

 Not any two functions can be compared in an asymptotic sense. 

 

 Ex.: f(n) = n 

        g(n) = n 1+sin n 

They can’t be compared. 

 

 

 

 

        f(n) = n 

        g(n) = n sin n 

They can be compared. 

f(n) is a tight upper bound for g(n). 

 



Floor, ceiling 

 

 Floor of x ∈  RR:    x : the greatest integer less than or equal to x 

 Ceiling of x ∈  RR:    x : the least integer greater than or equal to x. 

 x – 1 < x  ≤ x ≤ x  < x + 1 

 ∀  n ∋  ZZ: n / 2  + n / 2  = n 

 

Rate of growth of polynomials and exponentials 

                                                                

                                                             Any exponential grows faster than any polynomial! 

 

 

Series 

 

 

 

 

 

 

 

 

 

Stirling approximation: 

 

 

 

 

Fibonacci numbers and the Golden ratio 

 

Fi = Fi-1 + Fi-2,     i ≥ 2,     F0 = 0, F1 = 1 
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                                   The relation between the Fibonacci numbers and the Golden ratio. 

                                   Fibonacci numbers grow exponentially. 

 

Summations 
 
Sequence: a1,…, an     (finite) 

Series:                                         (infinite) 

 

                         If it exists we have convergent series (else divergent). 

 

 Linearity 

 

 

 

 

 

 Differentiation 

 

 

 

 

 

 Telescoping 

 Telescoping series (sums) 
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Products 

 

 

 

Bounding summations 

 

 By induction 

 Prove:  
 

 

 

 

 

 Assume: 

 

 

 

 

 

 

 By bounding terms 
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 By splitting 

 n even 

 

 

 

 

 

 

 

 

 

 By integrals 
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Elementary Data Structures 
 
Data should be organised into stuctures so that it can be processed as required by the problem 
 
 
Elementary (Basic or fundamental): 
 
There are just a few elementary data structure. All the other rely on the elementary data structures.  
 
STACK 

 
a) LIFO (Last in, first out)    LIFO 
b) FIFO (First in, first out) 
 
The stack is organised into locations: address 
p: pointers 
stack pointer: the address of the next available 
   locations 
 
Note:  
p: the address of the top which isn’t empty  
   (another view) 
 
Two basic operations: 

• write: PUSH: D (new data) → p (location) ; p → p+1 
• read: POP: p → p-1; p(location) → D 

 
Note: 
 
In theory : the stack is infinite 
In practice: finite  
  it’s impossible to increment the stack pointer: overflow: the stack is full 
 
 before writing overflow check is needed 
 
Note: 
before read: check whether the stack is empty (underflow check) (we want to extract a data from the empty stack) 
 
Application: 
 

• management of teh main memory 
 when the OS is loaded 

• compilers: evaluating expressions 
 

p 

locations 

address 

7 

B 

A 
1 

2 

3 

4 



FIFO 
 
it’s called a QUEUE 
 
 Head       Tail 
 

 
 
 
 
 
   Locations 
 
It is infinite at both ends. Tha data is written only from one direction at one end. 
Tail: where we write the data in 
Head: where we read the data out 
 
The space we can allocate for a QUEUE is finite. 

• overflow check: ENQUEUE 
• underflow check: DEQUEUE 

 
write: ENQUEUE 
read: DEQUEUE 
 
Application: 

• modelling the dataflow in online processing  (pressure, temperature) 
 
ARRAY   
 
1 dimensional  – sequence: a1, a2, a3,…, an 

  2 dimensional  – matrix: (ai,j)n×n 
  higher dimensional – matrix of matrices 
 
Usage: represent stack, queue, list… 
 
 
LIST 
 
L :E1, E2,  …, Ei,…En the elements of the list 
∀ Ei: Di  pi  data and pointer fields 
pi can contain several pointers: pi

j , j∈ {1,…} 
 
j=1 single linked list 
 
 
 D1   p1    D2        p2  ...       Dn      NIL 
 
 
      E1     E2    En 
 
NIL: no more list elements 
p1: the address of E2 
pi: the address of Ei+1 
Important:  the order in wich the elements are linked through the pointers (the logical order) not necessarily the same as the 

physical order. 
 

A B 



Example: Application:  
  to store data on disk (files) 
  element = track : the elements are stored on available tracks, ?????????? 
 
Operations: 
INSERT: write a new element into the list 

 a. front of the  first element of the list 
 
 
 
  E1    E2     En 
 
 
 
 
 
 
E 
 
pointer of E points towards E1 
 
b. after the last element  

 
 
 
 
 
   E1   E2     En 
 
 
 
 
 
 
             
            E 
  Replacing NIL with a pointer to E 
 
  c. between the existing elements 
 
 

    …            …     
         NIL 
 
E1          Ei     Ej    En 
    
 
 
 
          E 

Rearraging the pointers. 
 
 
 
 
 

… 
NIL 

… 
NIL 



SEARCHING: Θ (n) 
 
 
 D1 p1         Di        pi          Dn      NIL 
 
 E1    Ei    En 
 
D : to be searched  sequentially:  compare D with Di i=1,… 
            we either find 
it or not 
 
DELETION: delete an existing element 
 
 
 
       D        
                                                 NIL 
 
  E1    Ei  Ei+1    En 
 
 D: find the element contains D and take it out from the list 

a) searching 
b) deletion Ei 

 
 

…    D        
     … 
 
  Ei-1   Ei  Ei+1      

 
Logical deletion: just the pointers are rearranged, not physical deletion 
 

Example: array representation of a list 
 
 
 

    A   B   C NIL 
 
  E1   E2   E3    

  
 

    two dimensional array 
 
   1 2  3 

A 
 

B C 

(1,2) 
 

(1,3)  

 
 
 
 
 
 
 

Data 
 
Pointers 

  1 
 
  2 



Doubly linked list 
 

D1             D2              Dn 

 
E1    E2    E 
 
 
 
 
 
 
 
Sentinel: contains no data , points to the first element 
 

Circular list 
 
 Circular singly linked list 
 

 
 
 D1 p1         D2       p2         Dn   
 
E1    E2    En 

 
 
The sentinel always tells us which is the first element of the list. 
 



TREE 
 
 Mathematically: acyclic connected graph  
    
       ROOT level 0:  parent of its children, has no parent 
 
        level 1: children of the root, parents of level 2 
 
       level 2: children of the nodes of level 1, parents of 
        level 3 
………………………………    … 
     …..   last level:  leaves: have no children 
 
 
Binary tree: at most two children (except the leaves) 
   
       ROOT number of levels: HIGHT  (h) of the tree 
 
        number of leaves ≤ 2h  
 
    
left child 
    right child 
 
Implementation: by means of lists 
 
Example:             
            MULTI-LIST 
            (linked) 
 
              NIL   NIL             NIL 
 
 
 
             
          NIL       NIL 
 
 
Binary search tree 
 
   
                                  5   Every key in every left subtree is at most the key of  
                                                                       its root. 
          3     7  Every key in every righta subtree is at most the value  
     of its root. 
   2    5          8 
 
       Binary search tree property 
 



WALK: 
   
                                  R    INORDER: L Root R 
      PREORDER: Root L R 
             L           R    POSTORDER: L R Root 
 
Example:  
    INORDER: 2 3 5 5 7 8  ascending order of keys 
    PREORDER: 5 3 2 5 7 8 
    POSTORDER: 2 5  3 8 7 5  
 
 
Application: 
 
(A+B)*C-D mathematical form (usual) 
 
Evaluation of an arithmetic expression : 

• parentheses    precedence rules 
• operators 

form: Pohsh: no parentheses 
     no need the check the precedence of the operators 
        − 
             
    postorder walk: AB+C*D- POSTFIX POLISH FORM 
                           *            D             
 
     +              C 
 
             A      B 
 
 
Application:  
SORTING: arrange data 
 
numbers 1, 7, 6      1, 6, 7 
     Comparison 
 
Decision tree (specialised binary tree)  
a1, a2, a3              
    h=? 
          a1:a2    
     How many comparisons needed to sat the  
       ≤     > 
      numbers? 
             
       
      a2:a3       a1:a3  
    Lower bound for comparison – bored  
     ≤    >    
      sorting 
 

    a1:a2:a3    .  .  .       

   n! : number of leaves 
      n! ≤ 2h 
             
      h ≥ log (n!) 



 
 

HASHING 
 
 
                                                        Hash table 
                                                         
     U                                   0 

      •K1   •K2                                1                                         SLOTS (locations): every slot is  

         •K                             2                                        identified by a code (e.g., serial number) 

                                            : 

                                            . 

                                       m-1 

 

U: Universe of all possible key values (from where the keys can take values). 

K1, K2, K: keys, they are used to identify records. 

 

Hash function: h, meets the key values with the slots. 

h: U → {0, 1, …, m-1} 

h: K → h(K) 

Collision: h(K1) = h(K2) when K1 ≠ K2 

 Resolve:  chaining, data that collide are chained. 

 

 

      Sentinel 

 

 

 

 

Complexity 

Analysing hashing with chaining. 

Search: Θ(1+α) 

n: number of keys 

K1           ….. K2           ….. 



m: number of slots 

 

Search: 

 K 

 h(K) Θ(1) 

 search in the list Θ(α) 

 

 Θ(1) + Θ(α) = Θ(1 + α) 

 Assume:  n = O(m)  (as many keys as slots) 

 The search takes constant time. 

 Uniform hashing: any given key is equally likely to hash into any of the slots.  

Probability:1 / m 

 

Application 

• Spelling checker 

• Compilers 

• Game – playing 

• Graphs 

 

Hash function 

What makes a good hash function? (Uniform hashing is ensured 1 / m) 

Usually we do not know the distribution of the key values → difficult to design good hash function. 

In practice: spread the key values as much as possible. 
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 Division method 

  h(K) = K mod m   

  It does not work well in every case → m = 2p  

Reminder                       p bits 
   

 

p = 2   m = 22 

  0, 1, 2, 3                         2 bits 

  K = 5                                     3 bits 

  M should be a prime near α 

  n = 2000, α = 2000 / 3      

   

 Multiplication method 

  h(K) = m((KA) mod 1)  

  0 < A < 1, A = 0.618033 (Golden section) → good results 

 

 Uniform method 

  h(K) = Km  

  K – uniform distribution [0, 1] 

  Practically and theoretically good function 

 

Interpreting strings as numbers 

SOUNDEX CODING 
RADIX 128 

 C1 C2 …Cn   ASCII 

 C1 C2 …Cn   number 0 ≤ Cj ≤ 127 

 Ex.  p = 112, t = 116, pt = 116 + 128 ⋅ 112 = 14452 

 

1 0 1



Universal hashing 

There are h hashing functions s.t. there exist key values that more than one will be hashed into the 

same slot. 

Any fixed hashing is valid. 

 

H = {h1, h2, …, hr}  set of hash functions 

For any random hi → uniform hashing 

 

Statement 

 

If h is chosen from a universal collection H of hash functions and is used to hash n keys into a hash 

table of size m, where n ≤ m, then the expected number of collisions involving the particular key x is 

less than 1. 

Proof 

 

 

H universal: probability for y and z to collide is 1 / m (by definition) 
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Let cx be the number of collisions involving key x. 

 

                         cxy1 

                                cxy2 

                            

 

                                      cxyn-1 

 

 

 

 

 

 

 

 

Construction of a universal set H. 

 m – prime 

 given key x 

 decompose x = x0 x1 …xr , value xi < m 

 {0, 1, …, m-1}, let a be a sequence of slots 

 a = <a0 a1 …ar>, every ai is chosen randomly from the set {0, 1, …, m-1} 

Theorem 

The set H is universal. 
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Proof 

As many collisions as the number of equations. 

As many equations as different ai. 

 

H(n m)  n, m should be comparable. 

Choose at random any time when hashing should be done, apply h. 

 

Application  

Data bases 
Hash table + B- tree 

 

Not easy to estimate n 

Not easy the choice of h. 

( )

( )

( ) ( )

( )

( ) ( ) [ ]myxayxa

myaxa

myamxa

yhxh
yxyx

yyyy

myayh

mxaxh

yx

ii

r

i
i

i

r

i
ii

r

i
i

i

r

i
ii

r

i
i

aa

r

i

r

i
ia

i

r

i
ia

mod     

mod      

modmod

   
...

mod

mod

1
000

00

00

00

10

0

0

−≡−

≡

=

=
≠≠

=

=

=

≠

∑

∑∑

∑∑

∑

∑

=

==

==

=

=

mm
m

mH
m

r

r

r

r

1
1

1

=

=

+

+



ESTIMATION OF COMPLEXITY 
 

Running time: the time required for a computer to execute a program. 

Running time dependes on the following factors: 

 

− CPU: the higher the speed, the quicker the computer. 

− Memory: main and secondary memory available to execute the program. 

− Input data: size, type, operations. 

− Software: compiler, operating system, etc. 

− Algorithm (based on which the particular program is written). 

 

Example: a1 + a2 + a3 + a4 

S = 0    S = 0 
S = S + a1   FOR i = 1 TO 4 

S = S + a2   S = S + ai 

S = S + a3 

S = S + a4 

 

The asymptotic notation is a way to express how bad (slow) or good (fast) an algorithm is. 

Expression of complexity → we get a measure →  to express the 'character' or behaviour of an  

algorthm 

          →  comparison of algorthms in term of complexity. 

We can decide which algorithm is better or we should choose.  

Note: the complexity will not guarantee that the algorithm will really be faster or that the computer 

will always execute the program faster, because physical running time, as seen above, depends on 

other factors, too. 

 

 

 

 

 



Estimation of the complexity of an algorithm: 

 

1. Assignment  1 umit  Ex.: S = 0 

     Operations  1 unit each  

2. Consecutive statement  sum of each 

3. Loop: time required to evaluate the body multiplied by the number of iterations 

4. Nested loop: inside multiplied by the product of iterations 

5. IF: test + max (THEN, ELSE) 

 

This technique can over−estimate (ex. 5), but it will never under−estimate the complexity. 

 



SORTING   
 

To arrange given data according to given criteria. 
 

Ex.:  1. ci, i = 1, …, n 

             αj, j = 1, …, m (criteria) 

      arrange ci taking into account every αj 

2. List of names → alphabetic order 
3. Temperature values → ascending or descending order 

4. Sorting a1, a2,…,an input data 

    criterion: ascending (descending) 

 

BUBBLE SORTING 
 Main idea: find the smallest and put it on the top 

        find the second smallest and put it next to the top one … 

Ex.  2, 1, 7, 6  Fix the first number and compare it with all the other. If          

                                              wrong order swap and change. 

        1, 2, 7, 6 

                        
                         Repeat from the second position. 

 

        2, 7, 6            7, 6                 → 1, 2, 6, 7 

                

 

 

a1, a2, …, ai, aj…,an 

 

FOR i = TO n – 1 

 FOR j = i + 1 TO n 
  IF ai > aj THEN swap (ai, aj) 

2 · (n - 1)(n - 1) = O(n2) 

1

2 6 7



 
Best case: the input is already in the right order (no swap) → O(n2) 
Worst case: all the numbers are in the wrong order → O(n2) 

Average case: the numbers are given at random (typical case) 

 

Bubble sorting (comparison-based): O(n2) 

Comparison-based sorting: Ω(n log n) 

           O(n log n) 

 

QUICK SORTING 
The fastest known method. 

Divide and conquer philosophy 

  A(p, q), ∀  x ≤ q 

A(p…r) 

  A(q + 1, r), ∀  y ≥ q  

q: computed value 

 

Ex. 9, 2, 11, 20, 7 

Q: pivot =  (9 + 7) / 2  = 8 → not necessarily belongs to the sequence 

7, 2  11, 20, 9 

q = 4  q = 10 

2   7  9   11, 20 

        q = 15 

2   7   9   11   20 

 

QUICKSORT (A, p, r) 

IF p < r THEN 

     q ← PARTITION (A, p, r) 

      QUICKSORT (A (p, q)) 

      QUICKSORT (A (q + 1, r)) 

Initial call: QUICKSORT (A, 1, length(A)) 



PARTITION (A, p, r) 

x ← A(p), i ← p – 1, j ← r + 1 

WHILE TRUE DO  

 REPEAT j ← j – 1 UNTIL A(j) ≤ x 

 REPEAT i ← i + 1 UNTIL A(i) ≥ x 

  IF i < j THEN SWAP (A(i), A(j)) 

  ELSE RETURN j 

 

Recurrence: resolved by telescoping 

 

T(n) = nc + nlogn 

T(n) = O(nlogn)  average (and best) case 

Worst case: O(n2) 

Worst case: one element / region 
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SEARCHING 
 

There may be different situations where searching is performed 
 

SEQUENTIAL SEARCH 

Given a1, …, ai, …, an       (numbers / characters: objects to be searched) 

Find: x 

(naïve or brute force search or straight search) 

It is in fact one loop: 

 

FOR i = 1 TO n 

 IF x = ai THEN STOP 

O(n) 

 

Note: this kind of search is very simple (primitive),  

but what is if ai is a matrix? 

              records of a file? 

The comparison is more complicated here. But in principle it is very simple. 

 

RANDOM SEARCH 

Introduce some sort of probability. 

Given a1, …, ai, …, an to be searched. 

Find: x 

Coin: probability element 

   If head: search from 1 to n. 

Flip a coin 

   If tail: search from n to 1. 

Two sequential searches are combined, applied together. 

Assume: x = ai (ith position) 

     The coin is fair: the head and the tail occur with equal probabilities. 

 



If head: i comparisons to find x. 

If tail: n – i + 1 comparisons to find x. 

½ i + ½ (n – i + 1) = (n + 1) / 2 better than n. (Average the two case.) 

In average we need (n + 1) / 2 comparisons rather than n. 

 

The order of the elements is irrelevant (no need for pre-sorting) in 

− Sequential search, 

− Randomized search. 

 

BINARY SEARCH 

It is very quick and used almost everywhere. 

The elements to be searched are sorted. 

Given a1 ≤ … ≤ ai ≤ … ≤ an 

Find: x 

Idea: guess the number I am thinking at 

Ex. 2  3  7 | 8  9 | 10 

 Find: 9 

− Half the sequence. 

− Compare the last element with x. 

 

a1, …, an 

x 

low: leftmost element in the half = 1 

high: rightmost element in the half = n 

 REPEAT 

  mid = (low + high) DIV 2 

  IF low > high THEN mid = 0 

  ELSE  

  IF a(mid) < x THEN low = mid + 1 

  ELSE high = mid – 1 

 UNTIL x = a(mid) 



 

    O(log n) , very fast. 

    Note: n finite 

              If n infinite then binary search: div 2m 

              It may not happen in practice, just in theory. 

 

 

 

 

Note: 

1. Will the search work when all elements are given at once (at the same time)? 

2. Will the search work when all elements are given on line (one by one)? 

     1.   2. 

Sequential search   YES   YES 

Randomized search  YES   NO 

Binary search   YES    NO 

 

In every case we assume that we have just one processor to do the job. 

 

PARALLEL BINARY SEARCH 

It speeds up the binary search. 

P processors with shared memory (PRAM parallel RAM). 

CREW: Concurrent Read Exclusive Write 

Given the elements a1, …, ai, …, an sorted. 

Find: x 

Divide the sequence into p + 1 parts: 

  a1, …, ai1 | ai1+1, …, ai2 | …, aij | …, an  

x is compared with the boundary elements (or the leftmost or the rightmost) 

in parallel:  processor j compares x with the jth boundary 

   processor j sets a variable cj:   0, if x > aij 

        1, otherwise 
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   Thus: ∃ s: cs = 0 Λ cs + 1 = 1 (to locate part) 

   Repeat recursively until x = aij  

Complexity: 

   

  O (logp + 1 n) better than O(log n), if p > 1 

 

Note: PBS doesn’t online 

     PBS works offline 

 

STRING SEARCHING (straight search, naïve, brute force) 

Idea:  

    text (string of characters) of length n, i (index) pointer 

    find: pattern of length m, j 

Comparisons from left to right 

− match: both i and j are incremented 

− mismatch: reset j to the beginning of the pattern 

     i set to the position corresponding to moving the pattern to the right one  

     position 

 

 

Ex. 3  2  4  5  6  text: n = 5 

      4  5  pattern: m = 2 

3 2   4   5   6     
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4 5  

| → 

            4   5 

       | → 

      4   5 

 

O(n · m) 

 

KNUTH−−−−MORRIS−−−−PRATT ALGORITHM 

Given text: n, i 

      pattern: m, j 

Both pointers are incremented by 1 as long as there is a match. 

Mismatch at position k: j is reset and comparison is restarted. 

 

I. 3   2   3   4   5  i = 1  

 3   4   j = 1  

 

II. 3   2   3   4   5  i = 2 

 3   4   j = 2 

 

III. 3   2   3   4   5  i = 2 

      3   4  j = 1 

 

IV. 3   2   3   4   5  i = 3 

           3   4  j = 1 

 

O(n + m) 

 

 

 

 



BOYER−−−−MOORE ALGORITHM 

text: s1, m 

pattern: s2, m 

Idea: the pattern is searched from right to left, while it is moved from left to right an appropriate 

number of positions. 

 

      I.  3   2   7   4   5   6 
            4   5  mismatch: no matching characters between pattern and text → we move the  

         pattern m position to the right 

      II.  3   2   7   4   5   6 
                      4   5  mismatch: align the four 

      III.  3   2   7   4   5   6 
                             4   5   stop 
 
      O(n/m) really very fast. 

 

Application: word processing (spelling checker) 

 

SIGNATURE FILES 

Given text 

Every word is hashed (transformed) into a string of bits. (Ex. radix 128, soundex coding) 

synonym: in hashing sense, not grammatically 

 

hash table:                    The locations contains the possible bit representation 

   → sector (block) 

 

 

Find word x: 

 

− x is transformed into a string of bits, 

− the hash table is pre−sorted, 

− x is searched using binary search in the hash table or better hash function, 

− we get a block address on the disk, we find the word on that block somewhere, 



− we apply string searching within the block 

 

maximum−sized file 

relatively constant  

bibliographic DB searching 

 

INVERTED FILE 

Huge file (DB) such as in a library, WWW 

 

Search engines work as this: locate a word (not when the Web page is returned) 

Crawler (programme): scans the Web all the time. Builds (updates) an inverted file. 

 

Inverted file:  

                                                                       wi: words on the Web 

                                            Records              URL−s: containing that word 

            −  search (whether the word exists in  

the inverted file): B−tree (to  

implement the inverted file) 

− sorting (the inverted file is updated every time 

a new word appears) 

 

When we enter a word to search: 

− The search engine locates the word by searching the inverted file → string searching. 

− If the word is found in the inverted file then   depending on the retrieval techniques   the 

document / URL will be presented or not (this depends not solely on whether the word is present 

or  not). 

 

 

w1 URL1

w2 URL2

. .

. .

wn URL n
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