University of Veszprem
Hungary

DATA STRUCTURES

AND

ALGORITHM ANALYSIS

lecture notes

Sandor Dominich
Adrienn Skrop
Maria Horvath

2001.

Mathematics Review

1. Exponents

2. Logarithms

typically log, =log
log,b=x = a* =b
properties :logab =loga +logh

log% =loga-—1logh

log, b = log b
log. a
logl =0
log2 =1
Note :In, Ig

log, is just a compromise

3. Series

Geometric series

a'=
; a-1
n 2n+1_1

a=2, Zz‘: 1
1

n
0<a<l, Yas— 'Z'now
1-a

l+a+a’*+a’+..=S |@0 .
— Note : only validif convergence
a+a’+a’+a*+..=aS

Arithmetic series

Harmonic number

n

1
Hn=S - =log n+
Zi g n+y,

y. :const
y, =0.57721566 Euler's constant
Hn=Inn

4. Proofs

1. Proof by induction
We want to prove p(n)
1. Prove that p(n) holds for a base case p(ny)
2. Assume p(n) holds, n > ng

3. Prove p(n) J p(n+1)

Fibonacci numbers

Fo=1, F;=1 (by definition)
F,=F +Fy=2
Fi = Fi-l + Fi-2, 1=22

E<%QQI

2. Proof by contradiction (indirect, reductio ad absurdum)
To prove: P
1. Assume that TP holds
2. If we contradict some known property, then:
3. P (must be true)
Ex.:
P: there are infinitely many primes
TP: there are a finite number of primes
Py, Py ..., Py
Pi+Py+... + Py
N=P,-Py-...-P,+1
N>P,i=1,..,n
N is not prime contradict s
rem. (N:P)=1# O}Fundamental Theorem of Arithmetic

MUST conclude: TP is false < P is true

Ex.: V2 irrational , V2 O I=R\Q
P: V2 irrational
TP: V2 rational
V2=a/b,(a,b)=1
2b% =2’ a=2c
b?=2¢? contradiction

b=2d0 (a,b)# 1

Note: TP
P: The sun is shining
TP: The sun is NOT shining

It is not the sun that is shining

P: The rain, whose mean value in South Africa exceeds that of
Central Europe in august, is only half welcome in parts of a rain
forest.

OSe |Xn—Xm | <S¢, n>m

3. Evaluate
c1oi
G4 G4

n

Prove Z (2i —1) =n’

Asymptotic notation

© - notation
def

o(g(n) ={f (n)x,.c,.n, :0<c,g(n)< f(n)<c,g(n)On >n,}

A ci1g(n)

f(n)

cog(n) f(n)=e(g(n))

- i
>

©: asymptotically tight bound
Ex.:

2

n
f(n)=—-3n
(n) 5

¢, =—,C,=—,n, =3

1 1
67 2
cn’< f(n)<c,n’
f(n)=0(n%)

HW: 6n° # © (n?)

Property:
d .
p(n) =Y an

p(n)=0O(n°)

¢ = const = O(n’) = (1)

O notation

og(n) ={f (M)|Tk,n, :0< f (M) <cg(n),On=n}

n’ = 0O(n?)
n=0(n%
A
cg(n)
/ f(n)=0(g(n)
f(n)
>
O upper bound for f(n)
Q - notation
Qg(n) ={f (n)|Ck,n, :0<cg(n) < f(n),0n=n}
A
f(n)
cg(n) f(n)=Q(g(n)
A7
! >
T
Q lower bound for f(n)
A) 2

nlogn

Ex.:

1, S: integers
S:=0
FORi=1ton
S=S+i*i

1 11

Similarly (loop in loop):

FOR
FOR

O(nd)

running time
measure effective time

algorithm analysis

declaration takes no time
assignment: 1 unit
FOR: 1 unit n+ I unit
l+1+n+14+3=n+6=0(n)=0(n)

1. Calculate:

- — |l

2. Prove:

5, _(h+1)n+2)2n+3)

n+l1: le =
6
n+l

- n+1)(2n+l) 2
ZI ZI +(n+1)? ; r(+1)? =
:(n+1)E)L)+n+IH:(n+1)M:

o 6 0 6

2n2 +7n+6

=(n+1)

(n+2)2n+3)=2n> +7n+6 0 igaz

2(2i—1):n2

n+1

Z 22' Zl -n=n*+n-n=n’

nZzFi:Fn—z
1

n=3: ZFi:I:F3—2:1

n-2
Fi = Fn _2
1=

n-1

Z Fi = I:n+1 -2
1=

n-1 n-1 n-1 n-1

Z Fi=F +Z(Fi—l +F,)=F +Z Fioi +Z Fi

n-2 n-3
Foin —2=F, +F -2 :(Fn _2)+(Fn—l _2)+2 = Z F+ Z F+2
= =

Asymptotic notation in equations

n=0n>) n=0(nd
2n*+3n+1=2n"+O(n) There exists some functions such that the equation holds.

2n” + O(n) = O(n?)

0,Q,0 upper bound: O tight, o loose
0,® lower bound: Q tight, ® loose
. f(n))
hm% =0 g(n) grows much rapidly than f(n)
f Oo(g)
))
lim ? =) f(n) grows much rapidly than g(n)
n- oo g n
f Doo(g)

Properties

Transitivity

(f(n)=.(gm)) A gn)=. (h(n))) U f(n)=". (h(n))
where . [1 {O, Q, ©, 0, o}

Reflexivity
f(n) = . (f(n))

Symmetry
f(n) = O(gn)) = gn) = O(f(n))

Analogy between asymptotic notation and real numbers

f(n) = O(g(n)) a<b
f(n) = Q(g(n)) a>b
f(n) = ©(g(n)) a=b
f(n) = o(g(n)) a<b
f(n) = o(g(n)) a>b
Trichotomy

Dichotomy: Boolean logic

Trichotomic: three different values

Trichotomy: [Ja, b [R: exactly one of the followings holds:
a<b a=b a>b

Note: for every real number holds, and we can prove it.

Asymptotic notation: trichotomy doesn’t hold

Not any two functions can be compared in an asymptotic sense.

Ex.: f(n) =n
I+sin n

g(n)=n

They can’t be compared.

f(n) =n
o (n) —n sin n
They can be compared.

f(n) is a tight upper bound for g(n).

Floor, ceiling

Floor of x [J R: [X[Ithe greatest integer less than or equal to x
Ceiling of x [J R: [X[d the least integer greater than or equal to x.
x— 1 <Glkx<lkx+1

On0Z: h/20+ [/ 20=n

Rate of growth of polynomials and exponentials

n
limX - =0 : :
XL g¥ Any exponential grows faster than any polynomial!

nO0\{},a(1,9

Series

I+xseX <1+x+x7,|x <1

X - 0, :1+x+G)(x2

eX =1+x
X 1 X
=lim{ 2

x> X3
1n(1+x):x—7+7—...,|x|<1

Stirling approximation:

ot

L
JaenPH < s Ve
e 0 e 0

Fibonacci numbers and the Golden ratio

Fi=F.+F, 122, Fy=0,F =1

Sequence: ay,..., a, (finite)

Series: @, +...+a, +...= Z a, (infinite)

n

n—oo

Linearity

Z(Cak +b,) :CZak +Zbk
> o (k))zegg f(k)@

Differentiation
> X
=0 1 - X
i X
kx =——=
D2

x|<1

Telescoping

Telescoping series (sums)

AB _ AP

AP PB

A P B
AP = % (v5-1)
o=tV g 1=V5 a8 =1, AP =5 0o 61803
2 2 2
E = o' - P The relation between the Fibonacci numbers and the Golden ratio.
2 Fibonacci numbers grow exponentially.
Summations

lim 4 4 Ifit exists we have convergent series (else divergent).

Z(ak _ak—l):al —q,td At -, ta, 4 =a,—q,
=

=]

|
—_
p—
3
L

= k(K +1): - %Z_%Qz

Products

lg%j ay E: Zlg a,

Bounding summations

By induction

Prove: 23k -

[t: z ¥<cl3
Initial value:n=0
I1<cl,c=1
Assume:
n+l
;3k z3k +3M
<cB3"+3"™
= EP_ + l % |3”+1
B cO
<c3™
By bounding terms

n

Z a“,a_ = max a,
=

n
k
Z a“‘<na_,
=1
n
Ex. Z k<n’
=1

>

By splitting

neven

By integrals

n+l1

j’f(x)jxs;f(k)sjf(x)jx

m-1
"1 ™dx

EX;KZ.!’Y I

m-1 m m+1 n+l

Elementary Data Structures

Data should be organised into stuctures so that it can be processed as required by the problem

Elementary (Basic or fundamental):

There are just a few elementary data structure. All the other rely on the elementary data structures.

STACK
a) LIFO (Last in, first out) LIFO
b) FIFO (First in, first out)
The stack is organised into locations: address 4 p
p: pointers locati
stack pointer: the address of the next available 3 7 ocations
locations /
2
Note: B address
p: the address of the top which isn’t empty 1 /
(another view) A

Two basic operations:
e write: PUSH: D (new data) — p (location) ; p - p+1
e read: POP: p - p-1; p(location) — D

Note:

In theory : the stack is infinite

In practice: finite
it’s impossible to increment the stack pointer: overflow: the stack is full

before writing overflow check is needed

Note:
before read: check whether the stack is empty (underflow check) (we want to extract a data from the empty stack)

Application:
e management of teh main memory

when the OS is loaded
e compilers: evaluating expressions

FIFO
it’s called a QUEUE

Head Tail

«— ' «—

Locatighs

It is infinite at both ends. Tha data is written only from one direction at one end.
Tail: where we write the data in
Head: where we read the data out

The space we can allocate for a QUEUE is finite.
¢ overflow check: ENQUEUE
¢ underflow check: DEQUEUE

write: ENQUEUE
read: DEQUEUE

Application:
¢ modelling the dataflow in online processing (pressure, temperature)
ARRAY
1 dimensional — sequence: a,, a,, a3,..., a,
2 dimensional — matrix: (a;;)nxn
higher dimensional — matrix of matrices

Usage: represent stack, queue, list...

LIST

L :E|, E,, ..., E,...E, weclements of the list
UE;: D; p; data and pointer fields
p; can contain several pointers: p; , jO0{L,...}

J=1 single linked list

D, — ¥ D, pp ™ .. ~—P D, NIL

E, E, En

NIL: no more list elements

pi: the address of E,

pi: the address of E;4

Important: the order in wich the elements are linked through the pointers (the logical order) not necessarily the same as the
physical order.

Example: Application:
to store data on disk (files)

Operations:
INSERT: write a new element into the list
a. front of the first element of the list

NIL
El E2 En
E
pointer of E points towards E;
b. after the last element
NIL
E, E, E,
E
Replacing NIL with a pointer to E
c. between the existing elements
> —> > —> —>
NIL
E; E; E; E,
E

Rearraging the pointers.

SEARCHING: O (n)

D, p [> D pi > ™ D, |[NIL
E E; En
D : to be searched sequentially: compare D with D; i=1,...
we either find
it or not

DELETION: delete an existing element

—> > —> —> >

NIL

El Ei Ei+1 En

D: find the element contains D and take it out from the list
a) searching
b) deletion E;

—
T > " —>

Ei, E; Eiwi

Logical deletion: just the pointers are rearranged, not physical deletion

Example: array representation of a list

A B C NIL

E1 EZ E3

two dimensional array

1 2 3

A B C
1 4— Data

2 (1,2) (1,3) «— Pointers

Doubly linked list

D,

E

Sentinel: contains no data , points to the firs

Circular list

Circular singly linked list

D,

— TP

£

D,

E,

En

The sentinel always tells us which is the first element of the list.

TREE

Mathematically: acyclic connected graph

ROOT level 0:

level 1:

level 2:

last level:

Binary tree: at most two children (except the leaves)

left ¢hild O'\;
1ght child

Implementation: by means of lists

Example:
/ O\

ROOT number of levels: HIGHT (h) of the tree

parent of its children, has no parent

children of the root, parents of level 2

children of the nodes of level 1, parents of

level 3

number of leaves < 2"

24

Binary search tree

/ O\
50 9

NIL

leaves: have no children

Every key in every left subtree is at most the key of

its root.

Every key in every righta subtree is at most the value

of its root.

Binary search tree property

_d
- \ MULTI-LIST
M (linked)
T
NIL NIL
NIL NIL

WALK:

Q INORDER: L Root R

é O PREORDER: RootL R
POSTORDER: L R Root
Example:
INORDER: 235578 > ascending order of keys
PREORDER: 532578
POSTORDER: 253875
Application:

(A+B)*C-D mathematical form (usual)

Evaluation of an arithmetic expression :

e parentheses precedence rules
e operators
form: Pohsh: no parentheses

no need the check the precedence of the operators
* D
+/ \ C
{)

Application:
SORTING: arrange data

postorder walk: AB+C*D- POSTFIX POLISH FORM

numbers 1, 7, 6 > 1,6,7

Comparison

Decision tree (specialised binary tree)

a;, A, a3
© ap:ay

How many comparisons needed to sat the

<
/ \ numbers?
© Q:% aj:as

Lower bound for comparison — bored

\ < >
/ sorting
aj:az:as
! : number of leaves

n! <2t

h = log (n!)

HASHING

Hash table

™

/

SLOTS (locations): every slot is

identified by a code (e.g., serial number)

U: Universe of all possible key values (from where the keys can take values).

K, K», K: keys, they are used to identify records.

Hash function: h, meets the key values with the slots.
h:U - {0,1,...,m-1}

h: K - h(K)

Collision: h(K;) =h(K;) when K; # K,

Resolve: chaining, data that collide are chained.

Sentinel —» ¢ AN

K,

Complexity
Analysing hashing with chaining.
Search: O(1+a)

n: number of keys

m: number of slots

n . .
— :average number of elementsin a list
m

n . .
a0 = —:load factor (the analysis is made in term of Q)

m
Search:

K

h(K) o(1)

search in the list O(a)

O(1)+6(a)=0(1 +a)

Assume: n=0(m) (as many keys as slots)

= ﬂ = m = O(l)
m m

The search takes constant time.

Uniform hashing: any given key is equally likely to hash into any of the slots.

Probability:1 / m
Application

* Spelling checker
* Compilers

e Game — playing
* Graphs

Hash function
What makes a good hash function? (Uniform hashing is ensured 1 / m)
Usually we do not know the distribution of the key values — difficult to design good hash function.

In practice: spread the key values as much as possible.

Division method
h(K) = K mod m

It does not work well in every case — m = 2P

Reminder |:| p bits
[[]

p=2 m=2

0,1,2,3 2 bits
K=5 3 bits
M should be a prime near o

n=2000,a=2000/3

Multiplication method
h(K) = [in((KA) mod 1)0
0<A<1,A=0.618033 (Golden section) - good results

Uniform method
h(K) = [Km[J
K — uniform distribution [0, 1]

Practically and theoretically good function

Interpreting strings as numbers

SOUNDEX CODING
RADIX 128
Cl1C2...Cn ASCII
Ci1C2...Cn number 0 < Cj < 127

Ex. p=112,t=116,pt=116 + 128 [112 = 14452

Universal hashing
There are h hashing functions s.t. there exist key values that more than one will be hashed into the
same slot.

Any fixed hashing is valid.

H= {hy, hy, ..., h;} setof hash functions

For any random h; — uniform hashing
Statement

If h is chosen from a universal collection H of hash functions and is used to hash n keys into a hash
table of size m, where n < m, then the expected number of collisions involving the particular key x is
less than 1.

Proof

h(y)=h(z),0y,z
Letc,, a random variable:C,, = g.h(y) .(b
Y ,otherwise

H universal: probability for y and z to collide is 1 / m (by definition)

ch,J-!

BE,Pn =P(¢ = xn)H

Ele] = 0
D[E] > Py L

Let c be the number of collisions involving key x.

[1
nyl E _nyl_ - E
Cxy2
[1
E Cyy2l = E
Cxyn-1

1
E[C B] = _

xyn—1 m

Ele,] = ZE[ny] Z——Wl [0 = Cyp +ot Oy [
EE&&EZZE[&]E

Construction of a universal set H.
m — prime
given key x
decompose x = X¢ X; ...X;, value x; <m

{0, 1, ..., m-1}, let a be a sequence of slots

r

h,(x)= Z a;x; modm
H= U{ha} the universal set

a=<aga; ...a >, every a; is chosen randomly from the set {0, 1, ..., m-1}

Theorem

The set H is universal.

Proof
X#EY

h,(x)= i a,x, modm
1=0

h,(y)= iai y; modm
1=0

Y=Yo¥i---¥,
XZEY X, %Y,

h, (x)=h,(y)

\ X dm= \ V. d
;a,x,mo m ;a,y,mo m
r X = r V. d
;alxl ;al yl (mo m)

ao(xo - yo) = Z 8; (Xi - yi) [mOdm]
1=1
As many collisions as the number of equations.

As many equations as different a;.

r

m
H]=n
m"_1
m™ m

H(n m) n, m should be comparable.

Choose at random any time when hashing should be done, apply h.

Application

Data bases
Hash table + B- tree

Not easy to estimate n

Not easy the choice of h.

ESTIMATION OF COMPLEXITY

Running time: the time required for a computer to execute a program.

Running time dependes on the following factors:

— CPU: the higher the speed, the quicker the computer.

— Memory: main and secondary memory available to execute the program.
— Input data: size, type, operations.

— Software: compiler, operating system, etc.

— Algorithm (based on which the particular program is written).

Example: a; +a, + a3 + a4

S=0 S=0
S=S+a FORi=1TO4
S=S+a2 S=S+ai
S=S+a3

S=S+a4

The asymptotic notation is a way to express how bad (slow) or good (fast) an algorithm is.
Expression of complexity — we get a measure —» to express the 'character' or behaviour of an
algorthm
— comparison of algorthms in term of complexity.
We can decide which algorithm is better or we should choose.
Note: the complexity will not guarantee that the algorithm will really be faster or that the computer
will always execute the program faster, because physical running time, as seen above, depends on

other factors, too.

Estimation of the complexity of an algorithm:

1. Assignment 1 umit Ex.:S=0
Operations 1 unit each
2. Consecutive statement sum of each

3. Loop: time required to evaluate the body multiplied by the number of iterations
4. Nested loop: inside multiplied by the product of iterations
5. IF: test + max (THEN, ELSE)

This technique can over—estimate (ex. 5), but it will never under—estimate the complexity.

SORTING

To arrange given data according to given criteria.

Ex.: 1l.¢,i=1,...,n
a;j,j =1, ..., m(criteria)
arrange c; taking into account every a;

2. List of names — alphabetic order
3. Temperature values — ascending or descending order

4. Sorting a, a,...,a, input data

criterion: ascending (descending)

BUBBLE SORTING

Main idea: find the smallest and put it on the top

find the second smallest and put it next to the top one ...

Ex. 2,1,7,6 Fix the first number and compare it with all the other. If
M wrong order swap and change.
@ Repeat from the second position.
2,7,6 7,6 -1,2,6,7

aj, 42, ..., dj, dj...,an

FORi=TOn-1

FORj=i+1TOn
IF a; > a; THEN swap (a;, a;)

2-(n-1@n-1)=0(@

Best case: the input is already in the right order (no swap) — O(n?)
Worst case: all the numbers are in the wrong order — O(n?)

Average case: the numbers are given at random (typical case)

Bubble sorting (comparison-based): O(n?)
Comparison-based sorting: Q(n log n)

O(n log n)

QUICK SORTING

The fastest known method.
Divide and conquer philosophy
Ap, q), Ux<q
A(p...r)
A(q+1,rn,0y=q

q: computed value

Ex.9,2,11,20,7
Q: pivot = [{9 + 7) / 2[I= 8 - not necessarily belongs to the sequence
7.2 11,20,9

q=4 q=10

27 9 11,20
q=15

279 11 20

QUICKSORT (A, p, 1)

IF p<r THEN
q — PARTITION (A, p, 1)
QUICKSORT (A (p, q))
QUICKSORT (A (q+ 1,1))

Initial call: QUICKSORT (A, 1, length(A))

PARTITION (A, p, 1)
X « A(p)yi=p-1,j «r+1
WHILE TRUE DO
REPEATj « j— 1 UNTIL A(j) £x
REPEAT i « i+ 1 UNTIL A(i) =2 x
IF i <j THEN SWAP (A(1), A())
ELSE RETURNj

Recurrence: resolved by telescoping
T(n :ZTBIHHB n
(=215 5+ 6(n)
T(n)= ZTEEHW :n
(n) 5 H |
THH |

m: |:QD+1|:|

n n O

2 8

'y O

LU T(n) _T(1)

nooon o ——2=—""+logn

O

O

O

: O

T _T0,, L

2 1 H

T(n) = nc + nlogn
T(n) = O(nlogn) average (and best) case
Worst case: O(n?)

Worst case: one element / region

TM)=T(-D+OMN) 0O
T(n-1)=T(n-2)+6(n-1)
5
0
0

T2)=T1)+06(2) E

T(n):T(l)+iG)(k):
T =6’ =Y ek = @(Z k)

SEARCHING

There may be different situations where searching is performed

SEQUENTIAL SEARCH
Givenay, ..., a;, ..., a, (numbers / characters: objects to be searched)
Find: x
(naive or brute force search or straight search)

It is in fact one loop:

FORi=1TOn
IF x = a; THEN STOP
O(n)

Note: this kind of search is very simple (primitive),
but what is if a; is a matrix?
records of a file?

The comparison is more complicated here. But in principle it is very simple.

RANDOM SEARCH
Introduce some sort of probability.
Given ay, ..., aj, ..., a, to be searched.
Find: x
Coin: probability element
If head: search from 1 to n.
Flip a coin
If tail: search from n to 1.
Two sequential searches are combined, applied together.
Assume: x = a; (i position)

The coin is fair: the head and the tail occur with equal probabilities.

If head: 1 comparisons to find x.
If tail: n — 1+ 1 comparisons to find x.
a1+ % (n—1+1)=(n+ 1) /2 better than n. (Average the two case.)

In average we need (n + 1) / 2 comparisons rather than n.

The order of the elements is irrelevant (no need for pre-sorting) in
— Sequential search,

— Randomized search.

BINARY SEARCH
It is very quick and used almost everywhere.
The elements to be searched are sorted.
Givena;<...<a;<...<a,

Find: x
Idea: guess the number I am thinking at
Ex.2 3 7|8 9|10

Find: 9

— Half the sequence.

— Compare the last element with x.

ag, ..., ay
X
low: leftmost element in the half =1
high: rightmost element in the half =n
REPEAT
mid = (low + high) DIV 2
IF low > high THEN mid =0
ELSE
IF a(mid) <x THEN low = mid + 1
ELSE high = mid — 1
UNTIL x = a(mid)

— O(log n) , very fast.

20
n Note: n finite
2" If n infinite then binary search: div 2™
It may not happen in practice, just in theory.
_n
2 ogn{

Note:
1. Will the search work when all elements are given at once (at the same time)?

2. Will the search work when all elements are given on line (one by one)?

1. 2.
Sequential search YES YES
Randomized search YES NO
Binary search YES NO

In every case we assume that we have just one processor to do the job.

PARALLEL BINARY SEARCH
It speeds up the binary search.
P processors with shared memory (PRAM parallel RAM).
CREW: Concurrent Read Exclusive Write
Given the elements a4, ..., a;, ..., a, sorted.
Find: x
Divide the sequence into p + 1 parts:
ar, ..., it | i+, .. B2 | .o, @i | o0, n
x is compared with the boundary elements (or the leftmost or the rightmost)
in parallel: processor j compares x with the j" boundary

processor j sets a variable c;: i 0, if x > aj;

1, otherwise

Thus: [k: ¢s=0 A cs+1 =1 (to locate part)
Repeat recursively until x = aj;

Complexity:

BS PBS
n n

2 (p+1)
n

(p+1)

n n 0O
N

O (logp + 1 n) better than O(log n), if p > 1

Note: PBS doesn’t online

PBS works offline

STRING SEARCHING (straight search, naive, brute force)
Idea:

text (string of characters) of length n, 1 (index) pointer
find: pattern of length m, j

Comparisons from left to right

match: both i and j are incremented

mismatch: reset j to the beginning of the pattern

i set to the position corresponding to moving the pattern to the right one
position

Ex.32456
45

text: n=1>5

pattern: m =2
3 2456

O(n - m)

KNUTH-MORRIS-PRATT ALGORITHM
Given text: n, 1
pattern: m, j
Both pointers are incremented by 1 as long as there is a match.

Mismatch at position k: j is reset and comparison is restarted.

. 323435 i=1
3 4 j=1

. 32345 i=2

3 4 j=2
M3 2 3 45 i=2

3 4 j=1

IV. 32345 i=3
3 4 j=1

O(n +m)

BOYER-MOORE ALGORITHM
text: s1, m
pattern: s2, m
Idea: the pattern is searched from right to left, while it is moved from left to right an appropriate

number of positions.

. 327456
&5 mismatch: no matching characters between pattern and text — we move the

pattern m position to the right

I. 327456
k5 mismatch: align the four

.3 2 7 456
4 5 stop

O(n/m) really very fast.
Application: word processing (spelling checker)

SIGNATURE FILES
Given text
Every word is hashed (transformed) into a string of bits. (Ex. radix 128, soundex coding)

synonym: in hashing sense, not grammatically

hash table: The locations contains the possible bit representation

- sector (block)

Find word x:

— x is transformed into a string of bits,
— the hash table is pre—sorted,
— x is searched using binary search in the hash table or better hash function,

— we get a block address on the disk, we find the word on that block somewhere,

— we apply string searching within the block

maximum-sized file
relatively constant

bibliographic DB searching

INVERTED FILE
Huge file (DB) such as in a library, WWW

Search engines work as this: locate a word (not when the Web page is returned)

Crawler (programme): scans the Web all the time. Builds (updates) an inverted file.

Inverted file:
- URL, wi: words on the Web
W) URL, Records URL-s: containing that word
— search (whether the word exists in
the inverted file): B—tree (to
W URL,

implement the inverted file)

— sorting (the inverted file is updated every time

a new word appears)

When we enter a word to search:

The search engine locates the word by searching the inverted file — string searching.
If the word is found in the inverted file then [depending on the retrieval techniques [1 the

document / URL will be presented or not (this depends not solely on whether the word is present

or not).

	DATA STRUCTURES
	AND
	ALGORITHM ANALYSIS
	lecture notes
	Sandor Dominich
	Adrienn Skrop
	Maria Horvath
	2001.�Mathematics Review
	O notation
	
	Similarly (loop in loop):

	Asymptotic notation in equations
	O, O, T upper bound: O tight, o loose
	
	
	Properties

	Transitivity
	
	Floor, ceiling
	Series
	Summations
	Products

	By induction

	Elementary Data Structures
	HASHING
	
	Complexity
	Application

	Hash function

	Reminder p bits
	Interpreting strings as numbers

	SOUNDEX CODING
	Universal hashing
	Statement
	Proof
	Theorem
	Proof
	Application

	Data bases

	S = 0				S = 0
	SORTING
	To arrange given data according to given criteria.

	2. List of names (alphabetic order
	FOR j = i + 1 TO n
	Best case: the input is already in the right order (no swap) (O(n2)
	SEARCHING
	There may be different situations where searching is performed
	Find: x
	IV.	3 2 3 4 5		i = 3

	I. 	3 2 7 4 5 6
	II. 	3 2 7 4 5 6
	III. 3 2 7 4 5 6

