
1

Relational Algebra

� The Relational Model consists of the
elements: relations, which are made up
of attributes.

2

Relational Algebra

� A relation is a set of attributes with values for
each attribute such that:
� Each attribute value must be a single value only

(atomic).
� All values for a given attribute must be of the

same type (or domain).
� Each attribute name must be unique.
� The order of attributes is insignificant
� No two rows (tuples) in a relation can be identical.
� The order of the rows (tuples) is insignificant.

3

Relational Algebra

� Relational Algebra is a collection of
operations on Relations.

� Relations are operands and the result of an
operation is another relation.

4

Relational Algebra

� Two main collections of relational operators:

� Set theory operations:
� Union, Intersection, Difference and Cartesian product.

� Specific Relational Operations:
� Selection, Projection, Join, Division.

5

Set Theoretic Operations

Consider the following relations R and S.
R S

32 Jones Tony

23 KeenMary

28 GreenSally

22 Smith Bill

AgeLastFirst

27 DeMarcoDonJuan

28 GreenSally

36 GumpForrest

AgeLastFirst

6

Union: RUS

� Result: Relation with tuples from R and S
with duplicates removed.

27 DeMarcoDonJuan

36 GumpForrest

32 Jones Tony

23 KeenMary

28 GreenSally

22 Smith Bill

AgeLastFirst

7

Difference: R - S

� Result: Relation with tuples from R but not
from S

32 Jones Tony

23 KeenMary

22 Smith Bill

AgeLastFirst

8

Intersection: R∩S

� Result: Relation with tuples that appear in
both R and S.

28 GreenSally

AgeLastFirst

9

Union Compatible Relations

� Attributes of relations need not be identical to
perform union, intersection and difference
operations.

� However, they must have the same number
of attributes or arity and the domains for
corresponding attributes must be identical.

10

Union Compatible Relations

� Domain is the datatype and size of an
attribute.

� The degree of relation R is the number of
attributes it contains.

� Definition: Two relations R and S are union
compatible if and only if they have the same
degree and the domains of the corresponding
attributes are the same.

11

Additional properties

� Union, Intersection and difference operators
may only be applied to Union Compatible
relations.

� Union and Intersection are commutative
operations

� Difference operation is NOT commutative.

12

Cartesian Product: R×S

� Produce all combinations of tuples from two
relations.

R S

32 Jones Tony

23 KeenMary

22 Smith Bill

AgeLastFirst

CheesecakeLobster

Ice CreamSteak

DessertDinner

13

Cartesian Product: R×S

� R×S:

CheesecakeLobster32 Jones Tony

Ice CreamSteak 32 Jones Tony

CheesecakeLobster23 KeenMary

Ice CreamSteak 23 KeenMary

CheesecakeLobster22 Smith Bill

Ice CreamSteak 22 Smith Bill

DessertDinnerAgeLastFirst

14

Relational Algebra

� Two main collections of relational operators:

� Set theory operations:
� Union, Intersection, Difference and Cartesian product.

� Specific Relational Operations:
� Selection, Projection, Join, Division.

15

Selection Operator

� Selection and Projection are unary operators.

� The selection operator is sigma: σ

� The selection operation acts like a filter on a
relation by returning only a certain number of
tuples.

16

Selection Operator

� The resulting relation will have the same
degree as the original relation.

� The resulting relation may have fewer tuples
than the original relation.

� The tuples to be returned are dependent on a
condition that is part of the selection operator.

17

Selection Operator

� σC(R) Returns only those tuples in R that
satisfy condition C

� A condition C can be made up of any
combination of comparison or logical
operators that operate on the attributes of R.
� Comparison operators:

� Logical operators:

F F F

F T T

F T ∧

F T F

T T T

F T ∨

T F

F T¬

18

Selection Examples

� Assume the following relation EMP has the
following tuples:

AssociateFin 500 Smith

AssociateCS 420 Brown

AssistantEcon160 Green

AdjunctEcon220 Jones

AssistantCS 400 Smith

RankDeptOffice Name

19

Selection Examples

• Select only those Employees in the CS
department:
σ Dept = 'CS' (EMP)
Result:

AssociateCS 420 Brown

AssistantCS 400 Smith

RankDeptOffice Name

20

Selection Examples

� Select only those Employees with last name
Smith who are assistant professors:
σ Name = 'Smith' ∧Rank = 'Assistant' (EMP)
Result:

AssistantCS 400 Smith

RankDeptOffice Name

21

Selection Examples

� Select only those Employees who are either
Assistant Professors or in the Economics
department:
σ Rank = 'Assistant' ∨ Dept = 'Econ' (EMP)
Result:

AssistantEcon160 Green

AdjunctEcon220 Jones

AssistantCS 400 Smith

RankDeptOffice Name

22

Selection Examples

� Select only those Employees who are not in
the CS department or Adjuncts:
σ ¬ (Rank = 'Adjunct' ∨ Dept = 'CS') (EMP)
Result:

AssociateFin 500 Smith

AssistantEcon160 Green

RankDeptOffice Name

23

Projection Operator

� Projection is also a Unary operator.

� The Projection operator is pi: π
� Projection limits the attributes that will be

returned from the original relation.

� The general syntax is: π attributes R
Where attributes is the list of attributes to be
displayed and R is the relation.

24

Projection Operator

� The resulting relation will have the same
number of tuples as the original relation
(unless there are duplicate tuples produced).

� The degree of the resulting relation may be
equal to or less than that of the original
relation.

25

Projection Examples

• Project only the names and departments of
the employees:
π name, dept (EMP)

Results:

Fin Smith

CS Brown

EconGreen

EconJones

CS Smith

DeptName

26

Combining Selection and Projection

� The selection and projection operators can
be combined to perform both operations.

� Show the names of all employees working in
the CS department:
π name σ (Dept = 'CS' (EMP))

Results:

Brown

Smith

Name

27

Combining Selection and Projection

� Show the name and rank of those Employees
who are not in the CS department or
Adjuncts:

Results:

AssociateSmith

AssistantGreen

RankName

π name, rank σ(¬ (Rank = 'Adjunct'∨ Dept = 'CS') (EMP))

28

Aggregate Functions

� We can also apply Aggregate functions to
attributes and tuples:
� SUM
� MINIMUM
� MAXIMUM
� AVERAGE, MEAN, MEDIAN
� COUNT

29

Aggregate Functions

� Assume the relation EMP has the following
tuples:

60000 Fin 500 Smith

65000 CS 420 Brown

50000 Econ160 Green

35000 Econ220 Jones

45000 CS 400 Smith

SalaryDeptOffice Name

30

Aggregate Functions Examples

� Find the minimum Salary: F MIN (salary) (EMP)
Results:

35000

MIN(salary)

31

Aggregate Functions Examples

� Find the average Salary: F AVG (salary) (EMP)
Results:

51000

AVG(salary)

32

Aggregate Functions Examples

� Count the number of employees in the CS
department: F COUNT (name) σ (Dept = 'CS' (EMP))
Results:

2

COUNT(name)

33

Aggregate Functions Examples

� Find the total payroll for the Economics
department: F SUM (salary) σ (Dept = 'Econ' (EMP))
Results:

85000

SUM(salary)

34

Join Operation

� Join operations bring together two relations
and combine their attributes and tuples in a
specific fashion.

� The generic join operator (called the Theta
Join is:

� It takes as arguments the attributes from the
two relations that are to be joined.

35

Join Operation

• For example assume we have the EMP relation as
above and a separate DEPART relation with (Dept,
MainOffice, Phone) :
EMP EMP.Dept = DEPART.Dept DEPART

� The join condition can be
� When the join condition operator is = then we call

this an Equijoin
� Note that the attributes in common are repeated.

36

Join Examples

� Assume we have the EMP relation from
above and the following DEPART relation:

555-9876 100 Hist

555-4321 501 Fin

555-1234 200 Econ

555-1212 404 CS

PhoneMainOfficeDept

60000 Fin 500 Smith

65000 CS 420 Brown

50000 Econ160 Green

35000 Econ220 Jones

45000 CS 400 Smith

SalaryDeptOffice Name

37

Join Examples

� Find all information on every employee
including their department info:
EMP emp.Dept = depart.Dept DEPART

38

Join Examples

� EMP emp.Dept = depart.Dept DEPART

555-4321 501 Fin 60000 Fin 500 Smith

555-1212 404 CS 65000 CS 420 Brown

555-1234 200 Econ50000 Econ160 Green

555-1234 200 Econ35000 Econ220 Jones

555-1212 404 CS 45000 CS 400 Smith

PhoneMainOfficeDEPART.DeptSalaryEMP.DeptOffice Name

39

Join Examples

� Find all information on every employee
including their department info, where the
employee works in an office numbered less
than the department main office:
EMP (emp.office < depart.mainoffice) ∧ (emp.dept =

depart.dept) DEPART

40

Join Examples

� EMP (emp.office < depart.mainoffice) ∧ (emp.dept =

depart.dept) DEPART

555-4321 501 Fin 60000 Fin 500 Smith

555-1234 200 Econ 50000 Econ 160 Green

555-1212 404 CS 45000 CS 400 Smith

Phone MainOfficeDEPART.DeptSalary EMP.DeptOffice Name

41

Natural Join

� Notice in the generic (Theta) join operation,
any attributes in common (such as dept
above) are repeated.

� The Natural Join operation removes these
duplicate attributes.

� The natural join operator is: *
� We can also assume using * that the join

condition will be = on the two attributes in
common.

42

Natural Join Example

� Example: EMP * DEPART
Results:

555-4321 501 60000 Fin 500 Smith

555-1212 404 65000 CS 420 Brown

555-1234 200 50000 Econ160 Green

555-1234 200 35000 Econ220 Jones

555-1212 404 45000 CS 400 Smith

PhoneMainOfficeSalaryDeptOffice Name

43

Outer Join

� Often in joining two relations, a tuple in one relation
does not have a matching tuple in the other relation:
there is no matching value in the join attributes.

� To display rows in the result that do not have
matching values in the join column, use Outer join.

� Types of outer joins:
� Left Outer Join
� Right Outer Join
� Full Outer Join

44

Left Outer Join

R S
� (Left) outer join is a join in which tuples from R that

do not have matching values in common columns of
S are also included in result relation.

� Missing values in the second relation are set to null.

� The advantage of an Outer join is that information is
preserved, that is, the Outer join preserves tuples
that would have been lost by other types of tuples.

45

Outer Join Examples

� Assume we have two relations:
PEOPLE: MENU:

Shrimp 19 Dina

Beer 23 Carl

Pizza 24 Bill

Hamburger 21 Alice

Food Age Name

Friday Tacos

Thursday Pasta

WednesdayChicken

Tuesday Hamburger

Monday Pizza

Day Food

46

Left Outer Join

� PEOPLE people.food = menu.food MENU

NULLNULLShrimp 19 Dina

NULLNULLBeer 23 Carl

Monday Pizza Pizza 24 Bill

Tuesday Hamburger Hamburger 21 Alice

Day menu.Foodpeople.FoodAge Name

47

Right Outer Join

� PEOPLE people.food = menu.food MENU

Friday Tacos NULLNULLNULL

Thursday Pasta NULLNULLNULL

WednesdayChicken NULLNULLNULL

Tuesday Hamburger Hamburger 21 Alice

Monday Pizza Pizza 24 Bill

Day menu.Foodpeople.FoodAge Name

48

Full Outer Join

� PEOPLE people.food = menu.food MENU

Friday Tacos NULLNULLNULL

Thursday Pasta NULLNULLNULL

WednesdayChicken NULLNULLNULL

NULLNULLShrimp 19 Dina

NULLNULLBeer 23 Carl

Monday Pizza Pizza 24 Bill

Tuesday Hamburger Hamburger 21 Alice

Day menu.Foodpeople.FoodAge Name

49

Relational algebra and SQL

� SELECT statement
SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }
FROM TableName [alias] [, ...]
[WHERE condition]
[GROUP BY columnList] [HAVING condition]
[ORDER BY columnList]

50

SELECT Statement

FROM Specifies table(s) to be used.
WHERE Filters rows.
GROUP BY Forms groups of rows with same

column value.
HAVING Filters groups subject to some

condition.
SELECT Specifies which columns are to

appear in output.
ORDER BY Specifies the order of the output.

51

Relational algebra and SQL

� Projection
� Example: The table E (for EMPLOYEE)

100Tom7

300Sarah5

100John1

salarynamenr

52

Relational algebra and SQL - Projection

nr, salary(E)
select nr,
salary from E

salary(E)
select distinct
salary from E

Relational algebraResultSQL

300

100

salary

1007

3005

1001

salarynr

53

Relational algebra and SQL - Selection

salary < 200 and nr >= 7(E)

select * from
E where salary
< 200 and
nr >= 7

salary < 200(E)
select * from
E where salary
< 200

Relational algebraResultSQL

100Tom7

100John1

salarynamenr

100Tom7

salarynamenr

54

Combination of projection and selection

name, salary (salary
< 200(E))

select name,
salary from
E where
salary < 200

Relational algebraResultSQL

100Tom

100John

salaryname

55

Cartesian Product

table E (for EMPLOYEE) table D (for DEPARTMENT)

AJohn3

CSarah2

ABill1

edeptenameenr

LegalC

SalesB

MarketingA

dnamednr

56

Cartesian Product

E × D
select
*from E,
D

Relational
algebra

ResultSQL

LegalCAJohn3

SalesBAJohn3

MarketingAAJohn3

LegalCCSarah2

SalesBCSarah2

MarketingACSarah2

LegalCABill1

SalesBABill1

MarketingAABill1

dnamednredeptenameenr

57

Join ("inner join")

σdept = dnr (E × D)
or, using the
equivalent join
operation
E dept = dnr D

select *
from E, D
where
dept = dnr

Relational
algebra

ResultSQL

MarketingAAJohn3

LegalCCSarah2

MarketingAABill1

dnamednrdeptenameenr

58

Aggregate functions

� Table E (for EMPLOYEE)

CnullAnne12

A100Tom7

C300Sarah5

A100John1

deptsalarynamenr

59

Sum

� Count:
� Duplicates are not eliminated.
� Null values are ignored.

Fsum(salary)(E)
select
sum(salary)
from E

Relational algebraResultSQL

500

sum

60

Count

Fcount(salary)(ππππsalary(E))
select
count(distinct
salary)from E

Fcount(salary)(E)
select
count(salary)
from E

Relational algebraResultSQL

3

count

2

count

61

Aggregate Functions

� We can calculate aggregates "grouped by"
something:

deptFsum(salary)(E)

select
sum(salary)
from E group
by dept

Relational algebraResultSQL

300C

200A

sumdept

62

Aggregate Functions

� Several aggregates simultaneously:

deptFsum(salary),

count(*)(E)

select
sum(salary),
count(*)from
E group by
dept

Relational
algebra

ResultSQL

1300C

2200A

countsumdept

63

Outer join

� Example: Table E (for EMPLOYEE); table D
(for DEPARTMENT)

� List each employee together with the
department he or she works at.

AJohn3

BSarah2

ABill1

deptenameenr

LegalC

SalesB

MarketingA

dnamednr

64

Outer join

� What if we want to know the number of
employees at each department?

65

Outer join

E edept = dnr D

select *
from (E
right outer
join D on
dept = dnr)

Relational
algebra

ResultSQL

LegalCnullnullnull

MarketingAAJohn3

SalesBBSarah2

MarketingAABill1

dnamednrdeptenameenr

66

Outer Join

dnr, dnameFcount(*)(E dept =

dnr D)

select dnr,
dname,
count(*)from
(E right outer
join D on dept
= dnr)group by
dnr, dname

Relational algebraResultSQL

1LegalC

1SalesB

2MarketingA

countdnamednr

67

Outer Join

dnr, dnameFcount(enr)(E

dept = dnr D)

select dnr,
dname,
count(enr)from
(E right outer
join D on edept
= dnr) group by
dnr, dname

Relational algebraResultSQL

0LegalC

1SalesB

2MarketingA

countdnamednr

