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Abstract 

 

 

 

 

Connectionist views for adaptive clustering in Information Retrieval have proved to be viable approaches, 

and have yielded a number of models and techniques. However there has never been any exhaustive and 

methodical ⎯ i.e., theoretical, formal, practical, simulation- and user-based ⎯ evaluation of such a retrieval 

method and system. The aim of the paper is therefore just this. It suggests a connectionist clustering 

technique and activation spreading-based Information Retrieval model using the Interaction Information 

Retrieval method. Theoretical as well as simulation results as regards computational complexity of this 

method are presented and discussed. Evaluations of relevance effectiveness are also given using standard test 

collections. Two applications were designed, developed and implemented based on this method. Their 

relevance effectiveness was evaluated in vivo in experiments carried out with human subjects. The results 

obtained show that Interaction Information Retrieval based on a connectionist approach proves useful when 

emphasis is on high precision. 

 
 
Keywords: Information Search and Retrieval, Retrieval Models, Connectionist Models, Interaction 
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1 Introduction 

The application of soft computing techniques to Information Retrieval (IR) aims at enhancing retrieval 

performance by trying to capture aspects that could hardly be modeled by other means numerically, which is 

important because only this can yield implementable systems. For example, fuzzy set theory allows for 

expressing the inherent vagueness encountered in the relation between terms and documents, and fuzzy logic 

makes it possible to express retrieval conditions by means of formulas in the weighted Boolean model; an 

overview can be found in (Kraft, Bordogna, Pasi, et al., 1998).  

Connectionism represents another approach. Basic entities (documents, terms) are represented as an 

interconnected network of nodes. Artificial Neural Networks (ANN) and Semantic Networks (SN) are two 

techniques used for this. For example, Wordnet (Miller, 1990) is an online dictionary based on SN. As our 

technique is based on a spreading of activation, which is characteristic to ANN, we only make reference to 

this. ANN learning (which allows to model relations between documents, and documents and terms) was 

used with the principal aim to increase the accuracy of document-term weights (Bartell, Cottrell and Belew, 

1995; Belew, 1987, 1989; Bienner, Guivarch and Pinon, 1990; Cunningham et al., 1997; Fuhr and Buckley, 

1991; Layaida et al., 1997; Kwok, 1990). ANNs were also applied to query modification aiming at enhancing 

retrieval performance (Crestani, 1993; Wong and Yao, 1990). An important application area of ANNs is 

retrieval from legal texts (Rose and Belew, 1991; Rose, 1994; Warner, 1993).  

Clustering is a well-known technique applied in Information Retrieval. It is typically used to group 

documents, in which case the result is a ⎯ usually disjoint ⎯ set of document groups called clusters, each 

containing ⎯ in some sense ⎯ similar documents. Several clustering methods and techniques have been 

proposed so far based on similarity measures (van Rijsbergen, 1979; Salton and McGill, 1983), 

neighborhoods (Voorhees, 1985), hierarchies (Lebowitz, 1987; Willett, 1988; Fisher and McKusick, 1989; 

Crawford et al., 1991; Tanaka et al., 1999), matrices (Deerwester et al., 1990). Retrieval is performed based 

on a cluster representative which may but need not be one of the cluster members. If the particular retrieval 

method used associates a cluster representative to a query, then every member of that cluster will be returned. 

This view of retrieval is based on the well-known cluster hypothesis according to which closely associated 
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documents tend to be relevant to the same request. It is commonly agreed that ⎯ a priori or fixed ⎯ 

clustering should be stable under growth, description and ordering. Recent research reveals a sound 

mathematical background for fixed clustering as well as for its evaluation (Hearst and Pederson, 1996; 

Mather, 2000). 

As somewhat opposed to fixed clustering, adaptive clustering (i.e., a clustering in which the cluster 

structure is being developed in the presence of the query or user) has proved to be a viable approach to IR 

(Belew, 1989; Rose, 1994; Johnson et al., 1994, 1996; Shaw et al., 1997). Retrieval is then viewed similar to 

that in fixed clustering:  those documents are said to be retrieved which form the same cluster (‘nearest’ to 

query). One way of conceiving adaptive clustering is to adopt a connectionist-based view using ANNs 

(Cohen and Kjeldsen, 1987; Belew, 1989; Kwok, 1989, 1995; Doszkocs et al., 1990; Chen, 1994, 1995; 

Merkl, 1999; Wermter, 2000). As yet there have not been any exhaustive and methodical ⎯ both theoretical 

and practical ⎯ evaluations as regards computational complexity as well as retrieval effectiveness of such a 

retrieval method using both standard test collections and real users assessing real applications.  

Thus the aim of this paper is just this. It proposes a retrieval model using connectionist activation 

spreading based on the Interaction Information Retrieval (I2R) paradigm, and reports on its evaluation, 

analysis and application.  

2 Associative Interaction Information Retrieval  

The I2R paradigm was suggested in (Dominich, 1994; van Rijsbergen, 1996) based on the concept of 

interaction according to the Copenhagen Interpretation in Quantum Mechanics (query: measuring apparatus, 

documents: observed system, retrieval: measurement).  

The documents are represented as a flexibly interconnected network of objects. The interconnections 

are adjusted each time a new object (e.g., a document) is fed into the network. The query is interconnected 

with the already interconnected objects. Thus, on the one hand, new connections develop (between the 

object-query and the other objects), and on the other hand, some of the existing connections can change ⎯ 

this represents an interaction between query and documents. Retrieval is defined as recalled memories: those 
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documents are retrieved which belong to reverberative circles triggered by a spreading of activation started at 

the object-query. The reverberative circles correspond to clusters, which are not fixed as they develop in the 

presence of the query. This model will be referred to as Associative Interaction Information Retrieval (AI2R). 

The idea of flexible, multiple and mutual interconnections from AI2R also appear and are investigated in 

(Salton, Allan and Singhal, 1996; Salton, Singhal, Mitra and Buckley, 1997; Pearce and Nicholas, 1996; 

Carrick and Watters, 1997; Liu, 1997; Mock and Vemuri, 1997; Dominich, 1997, 2001).  

Any object oi, i = 1, 2, ..., M,  is assigned a set of identifiers (e.g., keywords) tik, k = 1, 2, ..., ni. There are 

weighted and directed links between any pair (oi, oj), i ≠ j, of objects. The one is  the ratio  between the 

number fijp of  occurrences of  term tjp in object oi, and the length ni of oi, i.e. total number of terms in oi:  

 w
f
nijp

ijp

i
= ,    p = 1, ..., nj                                                                          (1) 

Because wijp is analogous to the probability with which object oi ‘offers’ tjp (or equivalently with which tjp is 

extracted from oi when being in oj), the corresponding link may be viewed as being directed from object oi 

towards object oj.  

The other weight, wikj, is the inverse document frequency. If fjik denotes the number of occurrences of 

term tik in oj, and dfik is the number of documents in which tik occurs, then: 

ik
jikjik df

Mfw 2log=                                                                                   (2) 

Because wikj is a measure of how much content of object oj is ‘seen’ (or ‘mirrored’ back) by term tik, the 

corresponding link may be viewed as being directed from oi towards oj. The other two connections — in the 

opposite direction — have the same meaning as above: wjik corresponds to wijp, while wjpi corresponds to wikj 

(Figure 1). Figure 2 shows a simple example. 
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Figure 1. Associative Interaction Information Retrieval (AI2R). Connections between an arbitrary object pair 

oi and oj (see text). 
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Figure 2. Associative Interaction Information Retrieval (AI2R). Links with weights between object pair o1 

and o2 (example). Links pointing in the same direction are grouped together, and shown by one big common 

arrow. 
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The process of answering a query (retrieval) is performed in two phases:  

(i) Interaction. The query Q is incorporated first into the network. New weighted links appear 

between Q and the other objects, and some of the existing weights change (formula 2); this may be regarded 

as an expression of the network ‘learning’ the query. Figure 3 shows a simple example. 

(ii) Retrieval. A spreading of activation takes place according to a winner-take-all strategy. The 

activation is initiated at the query, say oj, and spreads over along the strongest connection thus passing on to 

another object, and so on. The total strength of the connection between any pair (oi, oj), i ≠ j, of objects, and 

thus between the query and another object oi is defined as follows: 

w wjpi
p

n

jik
k

nj i

= =
∑ ∑+

1 1                                                                                    (3) 

The summations (formula 3) is made possible by the meaning associated to wjpi and wjik (formulas 1, 2); each 

represents a measure of the extent to which the query, represented by oj, ‘identifies’ ⎯ the content of ⎯ oi. 

After a finite number of steps the spreading of activation reaches an object already affected (in the worst case 

it passes through the entire network and eventually gets back to the query) thus giving rise to a loop called 

reverberative circle (as a model for short term memory). This is analogous to a local memory recalled by the 

query. The reverberative circle can be interpreted as an adaptive cluster associated to the query when this is 

present in the network. Those objects are said to be retrieved which belong to the same reverberative circle, 

and they are ranked in the order of maximal activation, i.e., in the order in which they are traversed. The same 

objects may not form the same cluster for a different query. 

 

 

 

 

 

 



 

 

 

9

 

Figure 3. Associative Interaction Information Retrieval (AI2R). All links having the same direction between 

Q and o1, and Q and o3 are shown as one single arrow to simplify the drawing. (a) Interaction. New 

connections between object-query Q(=o3) and object-documents o1 and  o2 are developed, and there is a 

changed link between o1 and  o2 (0.47 instead of 0.3, see Figure 2 and formula 2). (b) Retrieval. The 

activation starts at Q, and spreads over to o1 (total weight = .33+.33+.47+.3=1.43) from which  to o2, and then 

back to o1. Q, o1 and o2 form a reverberative circle, and thus o1 and o2 will be retrieved. 
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3 Computational Complexity of AI2R  

As it could be seen in part 2 an algorithm which implements the method should compute a huge number of 

weights. Thus the question of tractability and hence complexity of such a computation arises, and it is 

answered in the following two theorems. 

3.1 Complexity of Weights Computation 

The complexity of weights calculation is given by the following theorem. 

THEOREM 1. The complexity of weights computation is polynomial. 

Proof. As it can be seen from the formulas 1 and 2 there are 2 × (ni + nj) number of weights between 

every pair (oi, oj), i ≠ j, of which there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
M

, hence 2 × (ni + nj) × ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
M

 has complexity O(N2), where O 

denotes 'big-Oh', and N = maxi,j(ni, nj), i.e., the largest of object lengths. The computation of the sums of 

weights (formula 3) between a given object oi and all the other objects oj, of which there are M − 1, takes 

time (ni + nj) × (M − 1), and thus an upper bound for the computation of all sums in the network is (ni + nj) × 

(M − 1)2 = O(NM2) because i can vary, too, at most M − 1 times. Hence an overall upper bound for weights 

computation is O(NM2) + O(NM2) = O(NM2) = O(K3), where K = max(N, M). g 

In other words the computation of weights is tractable. Once the weights have been calculated. 

3.2 Complexity of Retrieval 

The complexity of the retrieval process itself is given by: 

THEOREM 2. The retrieval process takes polynomial time. 

Proof. The spreading of activation starts at oq representing the query, and means finding maxi wiq,   i 

= 1, ..., M − 1, i.e., finding the maximum of all the weights linking oq with all the other objects of which there 

are M − 1 (where wiq = ∑p qpiw +∑k qikw , see formula 3). Finding this maximum has complexity O(M). 

Let om' denote the winner object, i.e., the object to which the activation spreads, and let L denote a list 
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keeping all the winner objects. It should be checked whether m' has already been a winner or not. This is 

accomplished by checking whether m' is in L or not: if it is we have a reverberative circle, and we stop; but if 

it is not in L it is written into L in the next available location. Checking L once takes O(length(L)) = O(M). 

Because the spreading of activation is carried out at most M times, checking L takes M × O(M) = O(M2) time. 

If all the weights are unique there only is one reverberative circle, but if there are objects, say oi (i = j1, ..., jk),  

from which there are more than one (i.e., multiple), say ni, maximal weights  the number of reverberative 

circles will be Πi ni = O(nk), where n = maxi ni, and thus an upper bound for the overall complexity of 

retrieval is O(nk) × O(M2) = O(nk × M2) = O((max(nk, M2))2) g 

Theorem 2 tells us that the retrieval process itself is a tractable computation. These results mean that 

the computations involved in AI2R have polynomial complexity, and thus the method is tractable (although it 

may be very computation demanding in practice).  

3.3 Probability of Multiple Maxima 

After weights summations there are M − 1 weighted links ⎯ s1, ..., si-1, si+1, ...,sM ⎯ from an object oi to all 

the other objects. Because i varies from 1 to M there are at most M × (M − 1) = O(M2) links to be evaluated in 

all (in a search). Depending on the multiplicity (i.e., unique, double, triple maximum, or higher) of the 

maximum of the sequence s1, ..., si-1, si+1, ..., sM the number of reverberative circles can increase. The number 

of retrieved objects depends on two factors: (a) the number of reverberative circles, and (b) the number of 

objects a reverberative circle contains. In order to render the influence of the first parameter simulations were 

carried out using a C program written for this purpose. M was taken 100,000, and different number of 

sequences of weights were generated at random. In each of these cases the maximum and its multiplicity was 

determined (Table 1).  
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Table 1. Simulation of the multiplicity of maxima. In 985 sequences out of 1000 sequences there was a 

unique maximum, in 14 cases there were double maxima, in 3 cases there was one triple maximum, and there 

were no maxima with multiplicity 4 (and so on). 

 

 Multiplicity of maxima  

Number of sequences 

Number of generated sequences 1 2 3 4 

1 000 985 14 1 0 

2 500 2469 30 1 0 

10 000 9532 439 26 2 
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Drawing the empirical density function yields a curve represented by the thinner line in Figure 4. The value 

of the empirical density function on every interval ∆x = (0, 1), (1, 2), (2, 3), (3, 4) is calculated separately 

using the usual ratio: 

valuesofnumbertotallength
valuesofnumber

___
__

×
                                                                                 (4) 

for each of the three cases (Table 1), and then the corresponding values are averaged.  
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Figure 4. Empirical (thinner line) and estimated (thicker line) density functions for the multiplicity of maxima 

(see text). 
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The empirical density function can be approximated by the function: 

f(x) = xueu
7.02 −                                                                                      (5) 

After curve fitting (calculations carried out using standard Mathcad curve fitting) this becomes: 

f(x) = 3.864e−1.605x                                                                                                 (6) 

which is an estimated density function, and thus the probability to have maximum with multiplicity 2 or 3 in a 

random sequence s1, ..., si-1, si+1, ..., sM of weights can be estimated using the usual definition from 

probability: 

∫ =−
3

2

605.1 078.0864.3 dxe x                     (7) 

The simulation results show that there always are a few multiple maxima, and their proportion is not high. 

The multiplicity increases with the number of sequences. (The probability of the multiplicity of maximum in 

a random sequence is an open, interesting and difficult mathematical problem.) 

4 Test Collections-based Relevance Effectiveness of AI2R 

In order to evaluate the standard retrieval effectiveness of the AI2R technique this was implemented in C++, 

and tested on the ADI and MEDLINE standard test collections.  

Index terms were obtained automatically using standard techniques (stoplist, Porter-stemming). The 

statistics are shown in Tables 2 and 3, respectively. The standard 11-point recall-precision plots are shown in 

Figures 5 and 6. These show, for comparison purposes, the results of the correlated search (CS) for the same 

ADI test collection [Bodner and Song, 1996], and for SMART [Deerwester et al., 1996]. 
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Table 2. Statistics for the ADI test collection. 

 

 

 

 

 

 

 

 

Subject Area Information Science 

Type Homogeneous 

No. of Documents 82 

No. of Queries 35 

No. of Terms 736 

Mean no. terms/Document 11 

Mean no. of Terms/Query 6 



 

 

 

17

  

Table 3. Statistics for the MEDLINE test collection. 
 

 

Subject Area Medical Sciences 

Type Homogeneous 

No. of Documents 1033 

No. of Queries 30 

No. of Terms 5732 

Mean no. terms/Document 55 

Mean no. of Terms/Query 9 
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The average precision at seen relevant documents is 0.55 in the AI2R search, whereas 0.43 using 

SMART search. If we take, as usual, the SMART results as a reference, the AI2R outperforms it by about 

20%, and it compares well to CS which it also outperforms at low to middle recall values. 
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    Figure 5. Recall−precision plot (line with squares) of AI2R for  the ADI test collection. The plot for 

correlated search (CS, line with crosses) is also shown for comparison, which AI2R outperforms at low to 

middle recall values.  
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Figure 6. Recall−precision plot of AI2R (line with squares) for the MED test collection. The plot for SMART 

is also shown (line with pluses) for comparison, which AI2R outperforms very clearly. 
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5 AI2R-based Applications 

5.1 i2rApplication 

An application [i2rApplication] was developed which makes it possible to search the M.Sc. theses written 

(mostly in the Hungarian language) in the School of Technical Informatics at the University of Veszprém, 

Hungary. The application consists of modules (in C, Visual Basic, CGI, MathCAD, HTML) whose functions 

are described briefly. The application can run under Windows, Unix, Linux (currently). The complete 

software consists of installation packs and documentations, and is maintained by [CIR]. Figure 7 shows the 

architecture of i2rApplication. 

 

 

 



 

 

 

22

 

 

  text 

Object Editor      Objects   Object Base Editor 

 text 

                   Object 
         Validation/Statistics Module      Base  

 
 

 
 
                    query  
 

CGI    Search Module 
 
                    answer 
 
 

 
Figure 7. i2rApplication: General architecture; see text for description. 
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5.1.1 Object Editor  

This module (Figure 8) makes it possible to create/edit objects. It is written in Visual Basic 6.0 (which allows 

for easy string operations and creation of user friendly interface), and is used off line under Windows (once a 

year in Autumn taking about one month). Its functions are as follows. 

– An object is the counterpart of the (traditional) document, and consists of two distinct files: description 

and keywords.  

– The description file contains the text and is stored in HTML format; the saving is modeled by a finite state 

automaton.  

– The other file contains the associated keywords, and is saved as a sequential ASCII file.  

– The text can be entered from the keyboard or imported from other files (which is currently done using 

extended abstracts).  

– At present indexing is done manually (a stoplist and stemmer for Hungarian are currently being 

developed and planned to be used for automatic indexing) by selecting the terms in the text or by keying 

them in.  

– The keywords undergo a small syntactic analysis and convertion for a unified representation (multiple 

spaces are replaced by one, convertion to small characters, elimination of commas and starting and ending 

spaces).  
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Figure 8. i2rApplication: Object Editor (in Hungarian). The function fields and their meanings are as follows: 

A: Content (e.g., text) of object, it can typed in or imported . B: index terms (they can be typed in or selected 

from field A. C: Add index term. D: Modify index term. E: Delete index term. F, G: settings of selected text 

(bold, italic). The other function fields mean object operations (top down): create new object, open for 

modification, save object, exit editor. Menu (left to right): (i) adds comment to object or HTML hyperlinks 

for browsing; (ii) import text from file; (iii) Help. 
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5.1.2 Object Base Editor  

This module (Figure 9) is written in C, and makes it possible to create object bases, add/delete objects to/from 

an object base. It is typically used off line on server once (but can be used as necessary). Its functions are as 

follows. 

– An object base is a collection of objects (pairs of files), and corresponds to a network of documents (in 

which activation spreading will take place).  

– As the objects are created off line on different computers and/or different directories, they must be 

grouped and stored in one directory on server.  

– Also, it is thus possible for an object to belong to multiple object bases (e.g., separate object base for each 

year, or one big common object base for all years; at present there is only one object base containing all 

theses from all years). 
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Figure 9. i2rApplication: Object Base Editor (in Hungarian).  Object names appear in the white window on 

the left. They can be selected for viewing, deletion from or adding to an object base. Function buttons (top 

down on the right): (i) add selected objects to object base; (ii) delete selected objects from object base; (iii) 

view selected object; (iv) exit object base editor. Menu (from left to right): (i) create, open, save object base; 

(ii) Help. 
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5.1.3 Validation and Statistics Module 

This module consists of C and Mathcad programs, and is used offline (usually after the use of Object and 

Object Base Editors) on a given object base. Its functions are as follows. 

– It checks the existence of file pairs, computes the number of objects, keywords, distinct keywords, non-

zero weights.  

– It is also used to set the lengths in bytes for basic types (integer, double, character, pointer), and to 

calculate the amount of memory needed by the Search Module to run.  

– The module was also used for simulations (see part 7). 

5.1.4 Search Module 

This module is used online on the World Wide Web. It can run under Windows, Linux (currently) or Unix, 

and consists of a series of CGI, C programs. It consists of  

(i) a series of user interfaces,  

(ii) of a set of search programs which carry out the spreading of activation and retrieval itself.  

The roles of this module are as follows. 

– Figure 10 shows the title page.  

– Figure 11 shows the HTML page that accepts the user’s query, which can contain terms separated by 

commas; there is no other restriction. The query undergoes a simple syntactic analysis as described at 

Object Editor.  

– This page is sent by browser to the server as a CGI POST FORM.  

– Other C programs transform the query into an object, and interconnects it into the network (object base). 

For the spreading of activation numeric encoding is used for keywords, and objects are represented as 

vectors of their keywords codes; these yield considerable speed (see part 7.4).  

– The retrieved objects are shown as HTML pages as shown in Figure 12 (hyperlinks possible, see Object 

Editor). 



 

 

 

28

 

 

Figure 10. Title page of i2rApplication. English or Hungarian versions can be selected by clicking on the 

chosen area.  



 

 

 

29

 

Figure 11. Query formulation in i2rApplication. The query is typed in into the white area to the left of the 

SEARCH button. Terms should be separated by commas; there is no other restriction. The search is initiated 

by clicking on SEARCH. 
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Figure 12. Search results in i2rApplication. Top page: List of hits. Bottom page: Details shown after clicking 

on a link.
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5.2 i2rMeta 

i2rMeta is a Web meta-search engine using the AI2R method [i2rMeta]. It consists of two software modules 

(in C and PERL) whose functions are described briefly. The application runs under Linux currently, and is 

maintained by [CIR]. Figure 13 shows the general architecture. 
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Figure 13. i2rMeta: General architecture; see text for description. 
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5.2.1 Interface Module  

It is written in PERL, works online, the communication with the Web server is performed by CGI (Figure 

14). Its roles are as follows. 

– The query is entered as a set of terms (separated by commas), they are Porter-stemmed, and then sent to 

four commercial spider-based Web search engines (Altavista, Google, Northernlight, WebCrawler) as 

HTTP requests.  

– The first twenty elements from the hit list of each Web searcher are considered, the corresponding Web 

pages are downloaded in parallel (Parallel User Agent) for speed. Non-existing Web pages, non-

responding hosts or responding with an error, or pages not downloading in a predefined time slot are all 

treated as transparent cases (i2rMeta continues working by passing on to a next page, if any), thus 

i2rMeta never frustrates the user by occasionally not working.  

– Each Web page undergoes the following processing: tags are removed, words are identified, stoplisted 

and Porter-stemmed.  

– The result will be an object base on the server disk (see 5.1 for object base), which also contains the 

corresponding URLs 

– The object base is then searched by the Search Module (below).  

– The Interface module is also used for displaying the results returned by the Search Module. 
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Figure 14. i2rMeta Web meta-searcher: search screen. The query is typed as terms separated by commas. The 

search is initiated by clicking on START SEARCH. (The language of the words in the title and tools bars 

depends on the browser being used.)
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5.2.2 Search Module  

This module (Figure 15) is written in C, works online, and implements the AI2R method using the object base 

and query from the Interface Module. The implementation is similar to that used in Search  Module of point 

5.1 with specific differences (e.g., presence of URLs). 
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Figure 15. i2rMeta Web meta-searcher: search results (see text). (The language of the words in the title and 

tools bars depends on the browser being used.) 
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6 Relevance Effectiveness of the Applications 

6.1 User Evaluation of i2rApplication 

i2rApplication was evaluated in vivo by its typical users, i.e., undergraduate students in computer science. 

They were asked to perform searches with queries at their choice, and used questionnaires to qualify the 

returned documents as to how relevant they found them on a scale of four values as follows: not satisfied = 1, 

too few relevant documents = 2, satisfied = 3, very satisfied = 4. The results are shown in Figure 16. The 

searches were performed in June 2000 by 45 students.  
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Figure 16. User satisfaction with relevance in i2rApplication. 
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The results show that almost 63% of the users were satisfied with the returned documents. 25% were very 

satisfied, and 12% thought that there were too few relevant documents in the answers. These confirmed what 

could be expected based on the results of the simulation and test collections, namely that the users are 

satisfied with the retrieval application based on AI2R which favors high precision at low recall. 

6.2 User Evaluation of i2rMeta 

The i2rMeta application was evaluated in vivo by users. A number of forty ⎯ undergraduate and graduate ⎯ 

users, coming from a variety of fields (computer science, chemistry, electrical engineering, tourism, material 

sciences, theatre, philology, English, German, environmental sciences, management) were asked to perform 

searches using i2rMeta. Each user performed four searches which means 160 searches in all. The searches 

were conducted in the second half of March 2001. The queries were their choice, and covered a variety of 

topics; example queries:  

 

Western digital specification, horned cattle, beggarly, country wedding, tesco, lyrid meteors, wireless markup 

language, mp3, regular expression in perl, HPLC, perl tutorial, driver, development kit, Nokia Mobile 

Phones, Search Engines. 

 

Every user was asked to write down the queries used and give the total number of hits/query 

returned by i2rMeta as well as the number of hits considered relevant (per query). Thus precision could be 

estimated in each case. The average values obtained are as follows:  

average_number_of returned_documents = 6 (per search) 

average_number _of_relevant_documents = 4 (per search) 

average_precision = 0.66. 
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6.3 Comparison of Rankings 

A set of experiments were conducted during April 2001 to compare rankings. The hits returned by i2rMeta as 

well as their rank in the hit list were compared with those of the Web search engines it used. The same query 

was submitted first to i2rMeta, and then, in sequence, to Altavista, Google, Northernlight, WebCrawler. The 

five lists were compared with each other. For example, the query “Download ICQ Message Archive” got 5 

answers in i2rMeta, of which the first was found on the hit list returned by Altavista where it was ranked 

third, the second found on the Google list and ranked first, the third found on Altavista’s list and ranked 

fourth, the fourth found on the Northernlight list and ranked second, and the fifth found on Google’s list and 

ranked third. Table 4 shows the results. The query “Nokia Mobile Phone 5110 3210” was not found within 

the first fourty hits (which are taken into account by i2rMeta; see above) returned in either of the search 

engines. In 70% of the cases search engines ranked the queries within the first ten. The majority of hits came 

from Google (21 cases), and then decreasingly from WebCrawler (14 cases), Altavista (12 cases), 

Northernlight (7 cases). It is very important to note that in all but one case there were hits ranked within the 

first three, in other words in 92% of the cases three out the hits returned by i2rMeta got top ranking by one of 

the search engines. This indicates that, as expected, the precision of i2rMeta (relative to these four 

commercial search engines) is indeed high.  
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Table 4. Results of experiments to compare rankings. 

Query Number of hits 
returned by i2rMeta 

Search engine Rank 

Altavista 6 
Altavista 1 
Google 4 

Information Retrieval 4 

Altavista 4 
Google 3 
Altavista 6 
Google 7 
WebCrawler 4 

Porter’s Algorithm 5 

Northernlight 2 
Google 1 
Altavista 1 

Regular Expression Tutorial 4 

WebCrawler 2 
Northernlight 2 
Google 6 
WebCrawler 12 

Perl Language Tutorial 4 

WebCrawler 10 
Google 1 
WebCrawler 3 
Google 4 

Siemens Mobile Phone C35i 4 

Altavista 2 
Northernlight 3 
Northernlight 7 

Nokia Mobile Phone 5110 3210 4 

Northernlight 2 
Google 2 
WebCrawler 5 
Altavista 8 
Google 1 

Free SMS Server 5 

Northernlight 3 
Google 9 
Google 3 

Search Engines 3 

Google 2 
Google 5 
Google 8 
Google 7 
WebCrawler 21 

Spider Based Search Engines  5 

WebCrawler 4 
Google 2 
Google 6 

Interaction Based Information Retrieval 3 

WebCrawler 13 
WebCrawler 23 
WebCrawler 15 
Google 3 

Access Control Systems 5 

Google 8 
Altavista 3 
Google 1 
Altavista 4 
Northernlight 2 

Download ICQ Message Archive 5 

Google 3 
Altavista 3 
WebCrawler 23 
Altavista 7 
Altavista 4 
WebCrawler 24 

English Hungarian Dictionary 6 

WebCrawler 19 
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6.4 First Five/Ten Precision in i2rApplication 

The i2rApplication was evaluated for its ability to put relevant pages within the first five and ten links 

returned. Experiments were carried out involving 50 computing students during September 2000 based on a 

method suggested in (Leighton and Srivastava, 1999). In our academic setting, the first five and ten links 

represent the quality a typical undergraduate would expect; but the method and formulas can be easily 

adapted for different values in another setting. Relevance categories were established prior to evaluating any 

links. Separate searches were performed for each query. Each of the thus returned lists (HTML pages) was 

evaluated (the persons the information needs originated from were not involved in these evaluations, which is 

not an uncommon practice as this would be hardly feasible): placement in a relevance category, calculation of 

numeric precision. The categories are as follows: (i) inactive links: file not found, forbidden, server not 

responding, (ii) duplicate links: the same link as an earlier one (e.g, duplicate theses titles due to multiple 

authors), (iii) category zero: irrelevant thesis, (iv) category one: relevant hit (either technically, i.e., the thesis 

title contains the search expression, or judged to be relevant due to its content). A document is either in a 

category or not in the category. In these tests precision was calculated, which is preferred in undergraduate 

context. Other measures of user satisfaction (such as screen layout, etc.) were not assessed.  

First five precision. The classes and their weights for the first five precision case are as follows: 

(a) Class 1: contains the first two links, and has weight 10, and (b) Class 2: contains the next three links, and 

has weight 5. A weighted sum is computed as follows: Links1,2 × 10 + Links3,4,5 × 5. In order to obtain a final 

value for precision the above weighted sum should be divided by the total weighted sum corresponding to the 

case when there are five answers. This is expressed as 2 × 10 + 3 × 5 = 35. If there are fewer links than five 

then 35 is decreased by 5 for every missing link (denoted by mis_link). Thus the formula for the denominator 

is as follows: 35 −  mis_link × 5. Hence the final formula for the computation of the final value of precision is 

as follows: 

 

5_35
510 5,4,32,1

×−

×+×

linkmis
LinksLinks

                   (8) 
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First ten precision. The classes and their weights for the first ten precision case are as follows: (a) 

Class 1: contains the first two links, and has weight 20, (b) Class 2: contains the next three links, and has 

weight 17, and (c) Class 3: contains the last five links, and has weight 10. Taking into account the above, and 

following the line for the first five precision case the final formula in this case is as follows: 

10_141
101720 1065,4,32,1

×−

×+×+× −

linkmis
LinksLinksLinks

                (9) 

In the case of duplicate links the above formulas were used twice each: once when a duplicate link was 

counted as being just one link (without penalty), and once when one of the duplicate links was counted as 

being irrelevant (with penalty). Figure 17 shows the averages for the first five/ten precision values.  
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Figure 17. Average values for first five/ten precision (see text). 
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The average for the first five precision is 0.661 without penalty and 0.648 with penalty. The average 

for the first ten precision is 0.544 without penalty and 0.531 with penalty. The mean of these four values is 

0.596. Precision effectiveness was much affected by irrelevant links the proportion of which was about 20%. 

As the proportion of duplicate links is relatively low in this application (it is not typical for a thesis to have 

several authors) their existence does not have a considerable affect on precision.  

7 Discussion 

7.1 AI2R and Hopfield Net 

Typically, ANN-based IR models consists of two or three layers (Kwok, 1989, 1995; Bienner, Giuvarch and 

Pinon, 1990) with inter- and intra-layer connections. The AI2R model is single-layered just like, e.g., the 

Hopfield network (Hopfield, 1982). Unlike in the Hopfield net, however, where nodes are activated in 

parallel and then relaxed until a stable state is reached, in AI2R the nodes are sequentially activated according 

to a winner-take-all strategy (Feldman and Ballard, 1982). Convergence is represented by a stable state in the 

Hopfield net, and by reverberative circles in AI2R. 

7.2 AI2R and NP-Completeness 

The suggested retrieval process, i.e., finding the reverberative circles, reminds of the Longest Circle Problem 

(Garey and Johnson, 1979) which is known to be NP-complete. (The Longest Circle problem reads as 

follows: Given an n-node undirected graph, and a positive integer k. Does the graph contain a simple cycle 

having at least k nodes?) However, the two problems are not equivalent: first of all because of Theorem 2, 

and on the other hand because retrieval means precise traversal (follow the maximum!) of the nodes starting 

from a fixed one (the query). The parallel or similarity might be caused by the following: the graph obtained 

after (i) having performed retrieval, (ii) having identified the circles, (iii) having kept only the links 
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corresponding to maxima (but unweighted), allows for formulating the Longest Circle Problem ⎯ but this is 

no longer the initial retrieval problem. 

7.3 Average Precision of AI2R 

The average precision values were 0.555 for ADI, and 0.51 for MED, hence the mean precision given by the 

standard tests is (0.555 + 0.51) / 2 = 0.553. The AI2R method was implemented in two applications whose 

precisions were evaluated using two series of experiments: with human subjects, and first five/ten precision. 

The mean of the results obtained for the first five/ten precision is (0.661 + 0.648 + 0.544 + 0.531) / 4 = 0.596. 

The results of user evaluations can be combined into the following numeric value: 0 × 0 + 0.333 × 0.12 + 

0.666 × 0.75 + 1 × 0.13 = 0.669, which, averaged with the mean precision value for i2rMeta, gives (0.669 + 

0.66) / 2 = 0.665. 

The evaluations based on the standard tests and the first five/ten precision method are practically 

close to each other: both operate under controlled  conditions with well defined parameters. Surprisingly 

enough, the users’ perception of precision was higher, and this might not have been totally expected based 

solely on the results of the other two series of experiments. These values reflect that there is not a direct and 

necessary logical implication or equivalence between the results of standard evaluations and those based on 

real users. 

7.4 Memory and Running Time in Applications 

7.4.1 Data Values at Present 

At present there are 210 objects (titles, authors’ names, abstracts) stored in the object base of i2rApplication. 

The average number of index terms/object is 17 (15-20 keywords/object), the average disk space is 26 

Kbytes/object (25 Kbytes for text +1 Kbyte for keywords), thus the object base takes up 26 × 200 = 5200 

Kbytes = 5 Mbytes. The amount of (main) memory needed to answer a query at present is 38383 bytes (=0.04 

Mbytes), and running time is practically instantaneous on the server.  
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 The implementations of AI2R were preceded by extensive and careful experimentation as regards 

memory and running time. An account of these follows. 

7.4.2 Representation of the Object Base 

The comparison of integers can be more than ten times faster than that of strings. Our simulations showed 

that the average comparison times varied between: (i) equal integers: 0-13,507 µs; (ii) not equal integers: 0-

13,315 µs; (iii) equal strings: 0-183,794 µs; (iv) not equal strings: 0-182,162 µs. Due to this, in the 

applications, distinct index terms are assigned unique numeric codes (sequence numbers, sorted for binary 

search), thus every object can be represented as a vector of the codes of its terms (also sorted for binary 

search). As well-known, the document-term matrix is typically a rare matrix, at present the average 

proportion of non-zero weights is 23%. The object base is updated once a year, and is thus practically static 

during most of the year. This means that instead of using the whole document-term matrix, the object base is 

practically represented for retrieval purposes in the application as a block of non-zero numbers (requiring 

much less memory): for every term j its code and the corresponding dfj, and for every document i the codes of 

its terms k together with fkj. These values only need be computed once after the yearly update. In retrieval, 

when the query is issued, this block is uploaded into the main memory, and updated according to query terms. 

For activation spreading it is enough to compute the weights between the object under focus and all the other 

nodes  (notice that there is no need to calculate all the weights for all nodes) using a recursive routine. These 

techniques ensure very few memory and very fast computation.  

The above idea to use a numeric block is being used in i2rMeta, too. However, the weights must be 

calculated online every time a query is issued. But server running time does not suffer from this (low number 

of objects, terms and weights), and this time is not felt by the user. What is felt is the time necessary to 

download Web pages from the four search engines, which depends on several factors (server, network time).  

Comparing Web meta-search engines is a very relative task (Gudivada, 1997). However, the 

following results were obtained. Typically, i2rMeta returns between 4 and 10 hits, and average response time 

can take between 5 s and 30 s, which compares fairly well other meta-search engines. Using the query 
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“information retrieval” the following results were obtained with several Web meta-search tools (name of 

meta-searcher engine: number of hits returned, time): 

C4:   50 hits, 10 s;  

Dogpile:  10 hits in 5 s;  

IxQuick:  46 hits, 15 s;  

MetaEureka:  67 hits, 6 s;  

Profusion:  25 hits, 10 s;  

RedESearch:  100 hits, 5 s;  

i2rMeta:  5 hits, 7 s; 

Centrapoint and InfoZoid did not return any hit in 60 s (after which they were stopped). 

7.4.3 Memory and Running Time in Future 

Using the Validation and Statistics Module the amount of memory needed by the Search Module of 

i2rApplication for more objects can be computed. At present, the average proportion of distinct index terms is 

60%; if we increase this pessimistically to, say, 90% then 1,000 objects require 228 Kbytes, 5,000 objects 1.1 

Mbytes, 10,000 objects 2.22 Mbytes, whilst 10,000 objects 22 Mbytes. The expected growth rate at present is 

of about 65 objects/year, hence after 12 years there will 1,000 objects, after 73 years 5,000 objects, and after 

150 years 10,000 objects (time spans hardly foreseeable, even at double growth rate).  The average disk space 

for an object is 26 (25+1) Kbytes, so 5,000 objects, for example, will require 127 Mbytes of disk space, 

10,000 objects the double. Simulations were carried on a 1GHz Pentium processor to estimate running time T 

for larger number N of documents: N = 5,000 , T < 1 s; N = 10,000, T < 1 s;  N = 100,000, T < 9 s. This 

means that the running time of i2rApplication will practically be instantaneous on server in the future.  

Carrying out the simulation for a typical TREC-like case (number of documents = 500,000, number 

of tokens/document = 200) the amount of memory needed would be 2.2 GBytes and running time 180 s. This 

running time might be too large, especially if it adds to Internet connection and transfer times. However, 

using a faster processor it would yield acceptable time performance. 
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7.5 AI2R and AIR 

AIR stands for Adaptive Information Retrieval system  (Belew, 1987). AI2R contains one type of node 

(document), AIR three types (terms, documents and authors). AI2R uses term frequency and inverse 

document frequency in combination, AIR just the latter. In both models retrieval is conceived as activation 

spreading, and the answer set is that containing most active nodes. Learning in AI2R means adjusting the 

weights to interconnect the query (interaction), in AIR it means changing the connection weights according 

user’s relevance-feedback. It can be seen that AI2R uses less node types and its weights are more articulate. 

7.6 AI2R and SCALIR 

SCALIR (Rose, 1994) stands for Symbolic and Connectionist Approach to Legal Information Retrieval. In 

both AI2R and SCALIR the nodes correspond to documents. In AI2R there are two types of weights, whilst 

SCALIR has three: connectionist (inverse document frequency), symbolic (formal relations between cases 

and statutes, and are fixed), hybrid (assigned by an expert indexer). In both models retrieval is represented as 

activation spreading, and the result set contains those documents whose nodes have the highest activation. In 

both systems the number of retrieved documents remains within manageable limits: SCALIR retrieves no 

more than about a dozen, AI2R no more than several dozens from a few thousands of documents [Dominich, 

1998]. Learning capabilities of SCALIR were tested only in a small experiment, and there are no relevant 

data on this. In SCALIR the number of terms per document is limited to about 10 and only a small subset of a 

node's neighbors are visited. It can be seen that AI2R is more generally applicable in that SCALIR needs 

domain specific (law) weights, too, to operate. Also, neither the number of terms per document nor the radius 

of activation spreading are limited in AI2R.  

7.7 AI2R and Sir-Web 

Sir-Web is a connectionist Web search system (Niki, 1997). It is based on a client (Java)-server (Horb) 

architecture, indexes 32,760 files with 463,616 keywords, and operates with AND-ed words queries. It 

adjusts weights during operation based on a user feedback by clicking on words offered on a list. 
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Unfortunately, there is not much information available as regards exact operation of Sir-Web, further the Sir-

Web server broke the connection many times with time out error. Also, the files Sir-Web indexes seem to 

come from mainly Japanese sites (based on the hit lists returned). Due to such circumstances, apart from 

comparable response times and lengths of hit lists,  other comparison between Sir-Web and AI2R was not 

possible. 

8 Conclusions 

A connectionist activation spreading-based Information Retrieval model, called Associative Interaction 

Information Retrieval (AI2R), was suggested using the Interaction Information Retrieval (I2R) method. 

It was shown that the complexity of the computations involved is polynomial, hence the AI2R 

method is tractable in implementation. An estimation was given as to the probability to have multiple 

maximal activities, and this was found to be between 0.07-0.08. Because this value is not large, the number of 

reverberative circles (and thus of retrieved objects) is kept under a few dozens in present applications. But it 

also suggests that the number of reverberative circles (and hence of retrieved objects, too) can be enhanced  

without considerable effect on computation time by considering not only maximal activities but also the pre-

maximal ones. 

Standard test collections (ADI, MEDLINE) were used to evaluate the classical effectiveness of the 

AI2R method. The results (precision at seen relevant documents was 0.55) showed that it was useful when 

high precision was favored at low to middle recall values. 

Two applications (i2rApplication, i2rMeta) based on the AI2R method were also designed, 

implemented and presented. Their precisions were evaluated by experiments carried out with human subjects, 

and using a first five/ten precision method. The results of these series of experiments showed that both 

applications behaved as expected, and, more, met very well users' satisfaction (between 50%−70%).  

Both i2rApplication and i2rMeta compared well with other connectionist systems (AIR, SCALIR, 

Sir-Web). Experiments also showed that i2rMeta compared well in terms of time and hit list size with usual 
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Web meta-search systems, and that its precision was high. This makes it a very good complementary web 

meta-search engine to start with. 

The series of theoretical research, tests and experiments presented in this paper constitute (for the 

first time) a complex, exhaustive and methodical evaluation of a retrieval technique and system based on a 

connectionist approach. At the same time they perhaps constitute a line and methodology recommended  for a 

complete research and analysis of any retrieval method and system. 

9 Acknowledgements 

The author would like to thank the anonymous reviewers for their comments and suggestions, the National 

Science Foundation research grant OTKA T 030194, and the Academic Research Foundation AKP 2001-140, 

Hungary, for financial support, and also E. Jeges, A. Nagy, and A. Skrop for helping implement the 

applications and carry out the tests, experiments and simulations. 

10 References 

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval, Addison Wesley. 

Bartell, B., Cottrell, G.W. and Belew, R.K. (1995). Learning to retrieve information. Proceedings of the 

Second Swedish Conference on Connectionism, Skovde, Sweden, March. 

Belew, R.K. (1987). A Connectionist Approach to Conceptual Information Retrieval. Proceedings of the 

International Conference on Artificial Intelligence and Law (pp. 116-126). Baltimore, ACM Press. 

Belew, R.K. (1989). Adaptive information retrieval: Using a connectionist representation to retrieve and learn 

about documents. Proceedings of the  SIGIR 1989 (pp. 11-20). Cambridge, MA, ACM Press. 

Bienner, F., Giuvarch, M. and Pinon, J.M. (1990). Browsing in hyperdocuments with the assistance of a 

neural network. Proceedings of the European Conference on Hypertext (pp. 288-297). Versailles, France.  

Bodner, R., and Song, F. (1996). Knowledge-based approaches to query expansion in information retrieval. 

In McCalla, G. (Ed.) Advances in Artificial Intelligence (pp. 146-158). Springer. 



 

 

 

52

Carrick, C. and Watters, C. (1997). Automatic Association of News Items. Information Processing and 

Management, 33(5), 615-632. 

Chen, H. (1995). Machine Learning for information retrieval: Neural networks, symbolic learning and genetic 

algorithms. Journal of the American Society for Information Science, 46, 194-216. 

Chen, H., Hsu, P., Orwig, R., Hoopes, L., and Nunamaker, J.F. (1994). Automatic concept classification of 

text from electronic meetings. Communications of the ACM, 37(10), 56-73. 

Cohen, P., and Kjeldson, R. (1987). Information retrieval by constrained spreading activation in semantic 

networks. Information Processing and Management, 23, 255-268. 

Crawford, S.L., Fung, R., Appelbaum, L.A., and Tong, R.M. (1991). Classification trees for information 

retrieval. Proceedings of the 8th Workshop on Machine Learning (pp. 245-249). Morgan Kaufmann. 

Crestani, F. (1993). Learning Strategies for an Adaptive Information Retrieval System Using Neural 

Networks. Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, 

USA. 

Cunningham S.J., Holmes G., Littin J., Beale R., and Witten I.H. (1997). Applying connectionist models to 

information retrieval. In Amari, S. and Kasobov, N. (Eds.)  Brain-Like Computing and Intelligent 

Information Systems (pp 435-457). Springer-Verlag. 

Deerwester, S., Dumais, S., Furnas, G., Landauer, T. and Harshman, R. (1990). Indexing by latent semantic 

analysis. Journal of the American Society for Information Science, 41, 391-407. 

Dominich, S. (1994). Interaction Information Retrieval. Journal of Documentation, 50(3), 197-212. 

Dominich, S. (1997). The Interaction-based Information Retrieval Paradigm. In Kent, A. (Ed.) Encyclopedia 

of Library and Information Science, Vol. 59, Suppl. 22. (pp. 218-236). Marcel Dekker, Inc., New York 

Basel Hong Kong. 

Dominich, S. (1998). An Interaction Retrieval Pre-processor for Relevance Feedback. Technology Letters, 

2(1), 5-18. 

 Dominich, S. (2001). Mathematical Foundations of Information Retrieval. Kluwer Academic Publishers, 

Dordrecht, Boston, London. 



 

 

 

53

Doszkocs, T., Reggia, J., and Lin, X. (1990). Connectionist models and information retrieval. Annual Review 

of Information Science & Technology, 25, 209-260. 

Feldman, J.A. and Ballard, D.H. (1982). Connectionist models and their properties. Cognitive Science, 6, 

205-254. 

Fisher, D.H., and McKusick, K.B. (1989). An empirical comparison of ID3 and back-propagation. 

Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89) (pp. 788-

793). Detroit, MI. 

Fuhr, N. and Buckley, C. (1991). A probabilistic learning approach for document indexing. ACM 

Transactions on Information Systems, 9(3), 223-248. 

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability. Bell Telephone Laboratories. 

Gudivada, V.N., Raghavan, V.V., Grosky, W.I. and Kasanagottu, R. (1997). Information Retrieval. IEEE 

Internet Computing, September-October, 58-68. 

Hearst, M. A., and Pederson, J. O. (1996). Reexamining the cluster hypothesis: Scatter/Gather on retrieval 

results. Proceedings of the 19th Annual International ACM SIGIR Conference, Zurich. 

Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. 

Proceedings of the National Academy of Sciences, 79, 2554-2558. 

i2rApplication. http://dcs.vein.hu/CIR 

i2rMeta. http://dcs.vein.hu/CIR 

Johnson, A., Fotouhi, F., and Goel, N. (1994). Adaptive clustering of scientific data. Proceedings of the 13th 

IEEE International Phoenix Conference on Computers and Communication (pp. 241-247). Tempe, 

Arizona. 

Johson, A., and Fotouhi, F. (1996). Adaptive clustering of hypermedia documents. Information Systems, 21, 

549-473. 

Kraft, D.H., Bordogna, P. and Pasi, G. (1998). Fuzzy Set Techniques in Information Retrieval. In: Didier, D. 

and Prade, H. (Eds.) Handbook of Fuzzy Sets and Possibility Theory. Approximate Reasoning and Fuzzy 

Infomation Systems, (Chp. 8). Kluwer Academic Publishers, AA Dordrecht, The Netherlands. 



 

 

 

54

Kwok, K.L. (1989). A Neural Network for the Probabilistic Information Retrieval. In Belkin, N.J. and van 

Rijsbergen, C.J. (Eds.) Proceedings of the 12th Annual International ACM SIGIR Conference on Research 

and Development in Information Retrieval (pp. 21-29). ACM Press, Cambridge, MA, USA. 

Kwok, K.L. (1990). Application of Neural Networks to Information Retrieval. In Caudill, M. (Ed.) 

Proceedings of the International Joint Conference on Neural Networks, Vol. II (pp. 623-626). Hilldale, NJ, 

Lawrance Erlbaum Associates, Inc. 

Kwok, K.L. (1995). A network approach to probabilistic information retrieval. ACM Transactions on 

Information Systems, 13(3), 243-253. 

Layaida, R., Boughanem, M. and Caron, A. (1994). Constructing an Information Retrieval System with 

Neural Networks. Lecture Notes in Computer Science, 856, Springer. 

Lebowitz, M. (1987). Concept learning in a rich input domain: Generalization-based memory. In Carbonell, 

J.G., Michalski, R.S., and Mitchell, T.M. (Eds.) Machine Learning, An Artificial Intelligence Approach, 

Vol. II. (pp. 193-214). Morgan Kaufmann. 

Leighton, H. V., and Srivastava, J. (1999). First Twenty Precision among World Wide Web Search Services 

(Search Engines). Journal of the American Society for Information Science, 50(10), 870-881. 

Liu, G.Z. (1997). Semantic Vector Space Model: Implementation and Evaluation. Journal of the American 

Society for Information Science, 48(5), 395-417. 

Mather, L. A. (2000). A Linear Algebra Measure of Cluster Quality. Journal of the American Society for 

Information Science, 51, 602-613. 

Merkl, D. (1999). Document classification with self-organizing maps. In Oja, E. and Kaski, S. (Eds.) 

Kohonen Maps. Elsevier, Amsterdam, The Netherlands. 

Miller, G. (1990). Wordnet: An online lexical database. International Journal of Lexicography, 3(4), Special 

Issue. 

Mock, K.J. and Vemuri, V.R. (1997). Information Filtering via Hill Climbing, Wordnet and Index Patterns. 

Information Processing and Management, 33(5), 633-644. 



 

 

 

55

Niki, K. (1994). Connectionist Self-organized Information Retrieval System: SIR. Proceedings of  

International Conference on Neural Information Processing (pp. 1803-1808). Vol 3., 

http://www.etl.go.jp/etl/ninchi/niki/welcome.html  

Niki, K. (1997). Sel-organizing Information Retrieval System on the Web: Sir-Web. In Kasabov, N. et al. 

(Eds.) Progress in Connectionist-based Information Systems. Proceedings of the 1997 International 

Conference on Neural Information Processing and Intelligent Information Systems, Vol. 2. (pp. 881-884). 

Springer, Singapore. 

Pearce, C. and Nicolas, C. (1996). TELLTALE: Experiments in a Dynamic Hypertext Environment for 

Degraded and Multilingual Data. Journal of the American Society for Information Science, 47(4), 263-

275. 

Rose, D. E. (1994). A symbolic and connectionist approach to legal information retrieval. Hillsdale, NJ, 

Erlbaum. 

Rose, D.E. and Belew, R.K. (1991). A connectionist and symbolic hybrid for improving legal research. 

International Journal of Man-Machine Studies, 35(1),1-33. 

Salton, G., Allan, J. and Singhall, A. (1996). Automatic Text Decomposition and Structuring. Information 

Processing and Management, 32(2), 127-138. 

Salton, G., and McGill, M. (1983). Introduction to Modern Information Retrieval. McGraw Hill, New York. 

Salton, G., Singhall, A., Mitra, M. and Buckley, C. (1997). Automatic Text Structuring and Summarization. 

Information Processing and Management, 33(2), 193-207. 

Sebastiani, F. (1994). A probabilistic terminological logic for information retrieval. Proceedings of the ACM 

SIGIR 17th International Conference on Research and Development in Information Retrieval (pp. 122-

130). Dublin, Ireland, Springer, London. 

Shaw, W., Burgiu, R., and Howell, P. (1997). Performance standards and evaluations in IR test collections: 

Cluster-based retrieval models. Information Processing and Management, 33, 1-14. 

SirWeb. http://www.etl.go.jp/etl/ninchi/niki/welcome-e.html  



 

 

 

56

Tanaka, H., Kumano, T., Uratani, N., and Ehara, T. (1999). An efficient document clustering algorithm and 

its application to a document browser. Information Processing and Management, 35(4), 541-557. 

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth, London. 

van Rijsbergen, C. J. (1996). Quantum Logic and Information Retrieval. Proceedings of Workshop on Logical 

and Uncertainty Models in Information Retrieval (pp. 1-2). University of Glasgow, Glasgow. 

Vorhees, E. (1985). The cluster hypothesis revisited. SIGIR, 188-196. 

Warner, D.R. (1993). A neural network-based law machine: The problem of legitimacy. Law, Computers and 

Artificial Intelligence, 2(2),135-147. 

Wermter S. (2000). Neural Network Agents for Learning Semantic Text Classification. Information 

Retrieval, 3(2), 87-103.  

Willett, P. (1988). Recent trends in hierarchic document clustering. Information Processing and Management, 

24, 577-597. 

Wong, S.K.M. and Yao, Y.Y. (1990). Query formulation in linear retrieval models. Journal of the American 

Society for Information Science, 41(5), 334-341. 

Yu, C.T., Suen, C., Lam, K., and Siu, M.K. (1985). Adaptive record clustering. ACM Transactions on 

Database Systems, 10(2), 180-204. 

 


