B-TREES

- B-trees are balanced search trees designed to work well on magnetic disks or other direct-access secondary storage devices.
- B-tree nodes may have many children, from a handful to thousands. That is called the "branching factor" of a B-tree.
- Every n-node B-tree has height $O(\lg n)$, therefore, B-trees can be used to implement many dynamic-set operations in time $O(\lg n)$.
- B-trees generalize binary search trees in a natural manner.
 - If a B-tree node x contains $n[x]$ keys, then x has $n[x] + 1$ children.
 - The keys in node x are used as dividing points separating the range of keys handled by x into $n[x] + 1$ subranges, each handled by one child of x.
 - When searching for a key in a B-tree, we make an $(n[x] + 1)$-way decision based on comparisons with the $n[x]$ keys stored at node x.

B-tree example

- A B-tree whose keys are the consonants of English.
- An internal node x containing $n[x]$ keys has $n[x] + 1$ children.
- All leaves are at the same depth in the tree.
- The lightly shaded nodes are examined in a search for the letter R.
Definition of B-trees

A **B-tree** T is a rooted tree (with root $root[T]$) having the following properties.

1. Every node x has the following fields:
 a. $n[x]$, the number of keys currently stored in node x,
 b. the $n[x]$ keys themselves, stored in nondecreasing order:
 \[
 key_1[x] \leq key_2[x] \leq \ldots \leq key_n[x],
 \]
 c. $leaf[x]$, a boolean value that is TRUE if x is a leaf and FALSE if x
 is an internal node.

2. If x is an internal node, it also contains $n[x] + 1$ pointers
 $c_1[x]$, $c_2[x]$, \ldots, $c_{n[x]+1}[x]$ to its children. Leaf nodes have no
 children, so their c_i fields are undefined.

3. The keys $key_i[x]$ separate the ranges of keys stored in each
 subtree: if k_i is any key stored in the subtree with root $c_i[x]$, then
 \[
 k_1 \leq key_1[x] \leq k_2 \leq key_2[x] \leq \ldots \leq key_{n[x]}[x] \leq k_{n[x]+1}
 \]

4. Every leaf has the same depth, which is the tree's height h.
5. There are lower and upper bounds on the number of keys a node can contain. These bounds can be expressed in terms of a fixed integer $t \geq 2$ called the **minimum degree** of the B-tree:

a. Every node other than the root must have at least $t - 1$ keys. Every internal node other than the root thus has at least t children. If the tree is nonempty, the root must have at least one key.

b. Every node can contain at most $2t - 1$ keys. Therefore, an internal node can have at most $2t$ children. We say that a node is **full** if it contains exactly $2t - 1$ keys.

The height of a B-tree

Theorem
- If $n \geq 1$, then for any n-key B-tree T of height h and minimum degree $t \geq 2$,

$$h \leq \log_t \frac{n + 1}{2}$$

Proof
- If a B-tree has height h, the number of its nodes is minimized when the root contains one key and all other nodes contain $t - 1$ keys.
- In this case, there are 2 nodes at depth 1, $2t$ nodes at depth 2, $2t^2$ nodes at depth 3, and so on, until at depth h there are $2t^{h-1}$ nodes.
- Thus, the number n of keys satisfies the inequality

\[n \geq 1 + (t - 1) \sum_{i=1}^{h} 2t^{i-1} = 1 + 2(t - 1) \left(\frac{t^h - 1}{t - 1} \right) = 2t^h - 1 \]

which implies the theorem.
A B-tree of height 3 containing a minimum possible number of keys. Shown inside each node x is n[x].

Basic operations on B-trees

Conventions:
- The root of the B-tree is always in main memory, so that a DISK-READ on the root is never required; a DISK-WRITE of the root is required, however, whenever the root node is changed.
- Any nodes that are passed as parameters must already have had a DISK-READ operation performed on them.
- The procedures are all "one-pass" algorithms that proceed downward from the root of the tree, without having to back up.

Searching a B-tree

B-TREE-SEARCH(x, k)
1 \(i \leftarrow 1 \)
2 \(\textbf{while } i \leq n[x] \text{ and } k \geq \text{key}_i[x] \)
3 \(\textbf{do } i \leftarrow i + 1 \)
4 \(\textbf{if } i \leq n[x] \text{ and } k = \text{key}_i[x] \)
5 \(\textbf{then return } (x, i) \)
6 \(\textbf{if leaf } [x] \)
then return NIL
else DISK-READ(\(c_i[x]\))
return B-TREE-SEARCH(\(c_i[x]\), \(k\))

- Using a linear-search procedure, lines 1-3 find the smallest \(i\) such that \(k \leq key_i[x]\), or else they set \(i\) to \(n[x] + 1\).
- Lines 4-5 check to see if we have now discovered the key, returning if we have.
- Lines 6-9 either terminate the search unsuccessfully (if \(x\) is a leaf) or recurse to search the appropriate subtree of \(x\), after performing the necessary DISK-READ on that child.

- Searching a B-tree is much like searching a binary search tree, except that instead of making a binary branching decision at each node, at each internal node \(x\), we make an \((n[x] + 1)\)-way branching decision.
- B-TREE-SEARCH takes as input a pointer to the root node \(x\) of a subtree and a key \(k\) to be searched for in that subtree.
- The top-level call is thus of the form B-TREE-SEARCH(\(root[T]\), \(k\)). If \(k\) is in the B-tree, B-TREE-SEARCH returns the ordered pair \((y,i)\) consisting of a node \(y\) and an index \(i\) such that \(key_i[y] = k\). Otherwise, the value NIL is returned.

Complexity of B-TREE-SEARCH

- The nodes encountered during the recursion form a path downward from the root of the tree.
- The number of disk pages accessed by B-TREE-SEARCH is therefore \(\Theta(h) = \Theta(\log_t n)\), where \(h\) is the height of the B-tree and \(n\) is the number of keys in the B-tree.
- Since \(n[x] < 2t\), the time taken by the \textbf{while} loop of lines 2-3 within each node is \(O(t)\), and the total CPU time is \(O(th) = O(t \log_t n)\).
Creating an empty B-tree

- To build a B-tree T, we first use B-TREE-CREATE to create an empty root node and then call B-TREE-INSERT to add new keys.
- Both of these procedures use an auxiliary procedure ALLOCATE-NODE, which allocates one disk page to be used as a new node in $O(1)$ time.
- We can assume that a node created by ALLOCATE-NODE requires no DISK-READ, since there is as yet no useful information stored on the disk for that node.

B-TREE-CREATE(T)

1. $x \leftarrow \text{ALLOCATE-NODE}()$
2. leaf[x] \leftarrow TRUE
3. $n[x]$ \leftarrow 0
4. DISK-WRITE(x)
5. root[T] \leftarrow x

- B-TREE-CREATE requires $O(1)$ disk operations and $O(1)$ CPU time.

Splitting a node in a B-tree

- Inserting a key into a B-tree is significantly more complicated than inserting a key into a binary search tree.
- A fundamental operation used during insertion is the splitting of a full node y (having $2t - 1$ keys) around its median key $key_t[y]$ into two nodes having $t - 1$ keys each.
- The median key moves up into y's parent - which must be nonfull prior to the splitting of y - to identify the dividing point between the two new trees; if y has no parent, then the tree grows in height by one.
- Splitting, then, is the means by which the tree grows.
• The procedure B-TREE-SPLIT-CHILD takes as input a nonfull internal node \(x \) (assumed to be in main memory), an index \(i \), and a node \(y \) such that \(y = c_i[x] \) is a full child of \(x \).
• The procedure then splits this child in two and adjusts \(x \) so that it now has an additional child.

\[
\text{B-TREE-SPLIT-CHILD}(x, i, y)
\]

1. \(z \leftarrow \text{ALLOCATE-NODE}() \)
2. \(\text{leaf}[z] \leftarrow \text{leaf}[y] \)
3. \(n[z] \leftarrow t - 1 \)
4. \(\text{for } j \leftarrow 1 \text{ to } t - 1 \)
5. \(\quad \text{do } key_j[z] \leftarrow key_{j+t}[y] \)
6. \(\quad \text{if not } \text{leaf}[y] \)
7. \(\qquad \text{then for } j \leftarrow 1 \text{ to } t \)
8. \(\qquad \quad \text{do } c_j[z] \leftarrow c_{j+t}[y] \)
9. \(n[y] \leftarrow t - 1 \)
10. \(\text{for } j \leftarrow n[x] + 1 \text{ downto } i + 1 \)
11. \(\quad \text{do } c_{j+1}[x] \leftarrow c_j[x] \)
12. \(c_{i+1}[x] \leftarrow z \)
13. \(\text{for } j \leftarrow n[x] \text{ downto } i \)
14. \(\quad \text{do } key_{j+1}[x] \leftarrow key_j[x] \)
15. \(key_i[x] \leftarrow key_t[y] \)
16. \(n[x] \leftarrow n[x] + 1 \)
17. \(\text{DISK-WRITE}(y) \)
18. \(\text{DISK-WRITE}(z) \)
19. \(\text{DISK-WRITE}(x) \)

• B-TREE-SPLIT-CHILD works by straightforward "cutting and pasting."
• Here, \(y \) is the \(i \)th child of \(x \) and is the node being split.
• Node y originally has $2t - 1$ children but is reduced to $t - 1$ children by this operation.
• Node z "adopts" the $t - 1$ largest children of y, and z becomes a new child of x, positioned just after y in x's table of children.
• The median key of y moves up to become the key in x that separates y and z.
• Lines 1-8 create node z and give it the larger $t - 1$ keys and corresponding t children of y.
• Line 9 adjusts the key count for y.
• Finally, lines 10-16 insert z as a child of x, move the median key from y up to x in order to separate y from z, and adjust x's key count.
• Lines 17-19 write out all modified disk pages.
• The CPU time used by B-TREE-SPLIT-CHILD is $\Theta(t)$, due to the loops on lines 4-5 and 7-8.
• Splitting a node with $t = 4$.
• Node y is split into two nodes, y and z, and the median key S of y is moved up into y's parent.

Inserting a key into a B-tree

• Inserting a key k into a B-tree T of height h is done in a single pass down the tree, requiring $O(h)$ disk accesses.
• The CPU time required is $O(th) = O(t \log n)$.
• The B-TREE-INSERT procedure uses B-TREE-SPLIT-CHILD to guarantee that the recursion never descends to a full node.

```plaintext
B-TREE-INSERT(T, k)
1 $r \leftarrow root[T]$
2 if $n[r] = 2t - 1$
3 then $s \leftarrow ALLOCATE-NODE()$
4 $root[T] \leftarrow s$
5 $leaf[s] \leftarrow FALSE$
6 $n[s] \leftarrow 0$
7 $c_1[s] \leftarrow r$
8 B-TREE-SPLIT-CHILD(s, 1, r)
9 B-TREE-INSERT-NONFULL(s, k)
10 else B-TREE-INSERT-NONFULL(r, k)
```

Lines 3-9 handle the case in which the root node r is full:
- the root is split and a new node s (having two children) becomes the root.
- Splitting the root is the only way to increase the height of a B-tree.
- Unlike a binary search tree, a B-tree increases in height at the top instead of at the bottom.
- The procedure finishes by calling B-TREE-INSERT-NONFULL to perform the insertion of key k in the tree rooted at the nonfull root node.
- B-TREE-INSERT-NONFULL recurses as necessary down the tree, at all times guaranteeing that the node to which it recurses is not full by calling B-TREE-SPLIT-CHILD as necessary.
Splitting the root

- Splitting the root with $t = 4$.
- Root node r is split in two, and a new root node s is created.
- The new root contains the median key of r and has the two halves of r as children.
- The B-tree grows in height by one when the root is split.

B-TREE-INSERT-NONFULL

The auxiliary recursive procedure

B-TREE-INSERT-NONFULL inserts key k into node x, which is assumed to be nonfull when the procedure is called.

```
B-TREE-INSERT-NONFULL (x, k)
1 i ← n[x]
2 if leaf[x]
3 then while $i \geq 1$ and $k < key_i[x]$
4 do key_{i+1}[x] ← key_i[x]
5 i ← i - 1
6 key_{i+1}[x] ← k
7 n[x] ← n[x] + 1
8 DISK-WRITE(x)
9 else while $i \geq 1$ and $k < key_i[x]$
```
The B-TREE-INSERT-NONFULL procedure works as follows.
- Lines 3-8 handle the case in which x is a leaf node by inserting key k into x.
- If x is not a leaf node, then we must insert k into the appropriate leaf node in the subtree rooted at internal node x.
- In this case, lines 9-11 determine the child of x to which the recursion descends.
- Line 13 detects whether the recursion would descend to a full child, in which case line 14 uses B-TREE-SPLIT-CHILD to split that child into two nonfull children, and lines 15-16 determine which of the two children is now the correct one to descend to.
- The net effect of lines 13-16 is thus to guarantee that the procedure never recurses to a full node.
- Line 17 then recurses to insert k into the appropriate subtree.

Complexity of B-TREE-INSERT

- The number of disk accesses performed by B-TREE-INSERT is $O(h)$ for a B-tree of height h, since only $O(1)$ DISK-READ and DISK-WRITE operations are performed between calls to B-TREE-INSERT-NONFULL.
- The total CPU time used is $O(th) = O(t \log_t n)$.
• Since B-TREE-INSERT-NONFULL is tail-recursive, it can be alternatively implemented as a while loop, demonstrating that the number of pages that need to be in main memory at any time is \(O(1) \).

![Diagram of B-tree insertions]

a) The initial tree for this example.

(b) The result of inserting B into the initial tree; this is a simple insertion into a leaf node.

(c) The result of inserting Q into the previous tree. The node RSTUV is split into two nodes containing RS and UV, the key T is moved up to the root, and Q is inserted in the leftmost of the two halves (the RS node).

(d) The result of inserting L into the previous tree. The root is split right away, since it is full, and the B-tree grows in height by one. Then L is inserted into the leaf containing JK.

(e) The result of inserting F into the previous tree. The node ABCDE is split before F is inserted into the rightmost of the two halves (the DE node).

Deleting a key from a B-tree
• Assume that procedure B-TREE-DELETE is asked to delete the key \(k \) from the subtree rooted at \(x \).
 – This procedure is structured to guarantee that whenever B-
 TREE-DELETE is called recursively on a node \(x \), the number of
 keys in \(x \) is at least the minimum degree \(t \).
 – Note that this condition requires one more key than the
 minimum required by the usual B-tree conditions, so that
 sometimes a key may have to be moved into a child node before
 recursion descends to that child.
 – This strengthened condition allows us to delete a key from the
 tree in one downward pass without having to "back up" (with
 one exception, which we'll explain).

Initial tree

![Initial tree diagram]

Case 1: If the key \(k \) is in node \(x \) and \(x \) is a leaf, delete the key \(k \) from \(x \).
Example: Deletition of F.

![Case 1 diagram]

Case 2: If the key \(k \) is in node \(x \) and \(x \) is an internal node, do the following.

![Case 2 diagram]
Deletion of M. The predecessor L of M is moved up to take M's position.

Deletion of G. G is pushed down to make node DEGJK, and then G is deleted from this leaf.

If the child y that precedes k in node x has at least t keys, then find the predecessor k' of k in the subtree rooted at y. Recursively delete k', and replace k by k' in x.

Symmetrically, if the child z that follows k in node x has at least t keys, then find the successor k' of k in the subtree rooted at z. Recursively delete k', and replace k by k' in x.

Otherwise, if both y and z have only t-1 keys, merge k and all of z into y, so that x loses both k and the pointer to z, and y now contains 2t - 1 keys. Then, free z and recursively delete k from y.

- Case 3: If the key k is not present in internal node x, determine the root $c_i[x]$ of the appropriate subtree that must contain k, if k is in the tree at all.
 - If $c_i[x]$ has only t - 1 keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least t keys.
 - Then, finish by recursing on the appropriate child of x.
 a. If $c_i[x]$ has only t - 1 keys but has a sibling with t keys, give $c_i[x]$ an extra key by moving a key from x down into $c_i[x]$, moving a key from $c_i[x]$'s immediate left or right sibling up into x, and moving the appropriate child from the sibling into $c_i[x]$.

Deletion of B. C is moved to fill B's position and E is moved to fill C's position.
b. If $c_i[x]$ and all of $c_i[x]$'s siblings have $t - 1$ keys, merge c_i with one sibling, which involves moving a key from x down into the new merged node to become the median key for that node.

Deletion of D. The recursion can't descend to node CL because it has only 2 keys, so P is pushed down and merged with CL and TX to form CLPTX; then, D is deleted from a leaf After this the root is deleted and the tree shrinks in height by one.