A General Portable Performance Metric

• Informally, Time to solve a problem of size, n, T(n) is $O(\log n)$

 $\bigstar T(n) = c \log_2 n$

- Formally:
 - O(g(n)) is the set of functions, f, such that f(n) < c g(n)

for some constant, c > 0, and n > N

• Alternatively, we may write $\lim_{n \to \infty} \frac{f(n)}{g(n)} \leq c$ and say *ie* for sufficiently large *n*

g is an upper bound for f

A General Portable Performance Metric

- O(g)
 - the set of functions that grow no faster than g.
- g(n) describes the worst case behaviour of an algorithm that is O(g)
- Two additional notations
- <u>Ω(g)</u>
 - the set of functions, f, such that

f(n) > c g(n)

for some constant, c, and n > N

• $\Theta(g) = O(g) \cap \Omega(g)$

Set of functions growing at the same rate as g

g is a lower

bound for f

Properties of the *O* **notation**

- Constant factors may be ignored
 - $\forall k > 0, kf \text{ is } O(f)$
- Higher powers grow faster
 - n^{r} is $O(n^{s})$ if $0 \le r \le s$
- ← Fastest growing term dominates a sum
 - If f is O(g), then f + g is O(g)

 $eg an^4 + bn^3$ is $O(n^4)$

Polynomial's growth rate is determined by leading term

• If f is a polynomial of degree d, then f is $O(n^d)$

Properties of the *O* **notation**

- f is O(g) is transitive
 - If f is O(g) and g is O(h) then f is O(h)
- Product of upper bounds is upper bound for the product
 - If f is O(g) and h is O(r) then fh is O(gr)
- Exponential functions grow faster than powers
 - n^k is $O(b^n) \forall b > 1$ and $k \ge 0$ eg n^{20} is $O(1.05^n)$
 - Logarithms grow more slowly than powers
 - $\log_b n$ is $O(n^k) \forall b > 1$ and k > 0 $eg \log_2 n$ is $O(n^{0.5})$ Important!

Properties of the *O* **notation**

- All logarithms grow at the same rate
 - $\log_b n$ is $O(\log_d n) \forall b, d > 1$
- Sum of first $n r^{th}$ powers grows as the $(r+1)^{th}$ power

•
$$\sum_{k=1}^{n} k^{r}$$
 is $\Theta(n^{r+1})$

$$eg \sum_{k=1}^{n} i = \frac{n(n+1)}{2}$$
 is $\Theta(n^2)$

Polynomial and Intractable Algorithms

- Polynomial Time complexity
 - An algorithm is said to be polynomial if it is $O(n^d)$ for some integer d
 - Polynomial algorithms are said to be efficient
 - They solve problems in reasonable times!
- Intractable algorithms
 - Algorithms for which there is no *known* polynomial time algorithm
 - We will come back to this important class later in the course

Analysing an Algorithm

• Simple statement sequence

 \mathbf{S}_1 ; \mathbf{S}_2 ;; \mathbf{S}_k

- O(1) as long as k is constant
- Simple loops

for(i=0;i<n;i++) { s; }
where s is O(1)</pre>

- Time complexity is n O(1) or O(n)
- Nested loops

for(i=0;i<n;i++)</pre>

for(j=0;j<n;j++) { s; }</pre>

This part is O(n)

• Complexity is n O(n) or $O(n^2)$

Analysing an Algorithm

Loop index doesn't vary linearly

```
h = 1;
while ( h <= n ) {
    s;
    h = 2 * h;
    }</pre>
```

- h takes values 1, 2, 4, ... until it exceeds n
- There are $1 + \log_2 n$ iterations
- Complexity $O(\log n)$

Analysing an Algorithm

Loop index depends on outer loop index

```
for(j=0;j<n;j++)
  for(k=0;k<j;k++){
    s;
    }</pre>
```

- Inner loop executed
 - 1, 2, 3,, n times

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}$$

 \therefore Complexity $O(n^2)$

Distinguish this case where the iteration count increases (decreases) by a constant $\bigstar O(n^k)$ from the previous one where it changes by a factor $\bigstar O(\log n)$