
A General Portable Performance Metric

• Informally, Time to solve a problem of size, n,
T(n) is  O(logn)

T(n)  = c log2n
• Formally:

• O( g(n) ) is the set of functions, f, such that
 f(n)  <  c g(n)
 for some constant, c > 0, and n > N
• Alternatively, 

we may write
 and say

lim f(n)

g(n)n→∞
≤ c

ie for sufficiently
large n

g is an upper bound for f 



A General Portable Performance Metric

• O( g ) 
- the set of functions that grow no faster than g.

• g(n) describes the worst case behaviour of an 
algorithm that is O( g )

• Two additional notations
• Ω( g )

- the set of functions, f,  such that
 f(n)  >  c g(n)
 for some constant, c, and n > N

• Θ( g )  =  O( g )  ∩ Ω( g )

g is a lower 
bound for f 

Set of functions growing
at the same rate as g 



Properties of the O notation

• Constant factors may be ignored
• ∀  k > 0,  kf is O( f) 

• Higher powers grow faster
• nr is O( ns)  if 0 ≤ r ≤ s

Fastest growing term dominates a sum
• If  f is O(g),  then  f + g is O(g)
 eg an4 +  bn3 is O(n4 )

Polynomial’s growth rate is determined by leading 
term

• If  f is a polynomial of degree d, 
then  f is O(nd)



Properties of the O notation
• f is O(g) is  transitive

• If  f is O(g) and g is O(h) then  f is O(h)
• Product of upper bounds is upper bound for the 

product
• If  f is O(g) and  h is O(r) then  fh is O(gr)

• Exponential functions grow faster than powers
• nk is O( bn )  ∀ b > 1 and k ≥ 0

eg n20 is  O( 1.05n)
• Logarithms grow more slowly than powers

• logbn is O( nk)  ∀ b > 1 and k > 0
eg log2n   is  O( n0.5) Important!



Properties of the O notation

• All logarithms grow at the same rate
• logbn is O(logdn) ∀ b, d > 1 

• Sum of first n rth powers grows as the (r+1)th power
• Σ  kr is Θ (  nr+1 )
 

eg Σ i   = is Θ ( n2 )

k=1

n

k=1

n n(n+1)
2



Polynomial and Intractable Algorithms

• Polynomial Time complexity
• An algorithm is said to be polynomial if it is 

O( nd ) for some integer  d
• Polynomial algorithms are said to be efficient

• They solve problems in reasonable times! 

• Intractable algorithms
• Algorithms for which there is no known

polynomial time algorithm
• We will come back to this important class later 

in the course



Analysing an Algorithm

• Simple statement sequence
 s1; s2; …. ; sk
• O(1) as long as k is constant

• Simple loops
 for(i=0;i<n;i++) { s; }
 where s is O(1)
• Time complexity is   n O(1) or   O(n)

• Nested loops
 for(i=0;i<n;i++)

for(j=0;j<n;j++) { s; }
• Complexity is   n O(n)   or   O(n2)

This part is
O(n)



Analysing an Algorithm

• Loop index doesn’t vary linearly
 h = 1;
while ( h <= n ) {

s;
h = 2 * h;

 }
• h takes values 1, 2, 4, … until it exceeds n
• There are 1 + log2n  iterations
• Complexity   O(log n)



Analysing an Algorithm

• Loop index depends on outer loop index
 for(j=0;j<n;j++)
 for(k=0;k<j;k++){

s;
}

• Inner loop executed
• 1, 2, 3, …., n times

∴ Complexity   O(n2)

n
Σ i  =
i=1

n(n+1)
2

Distinguish this case -
where the iteration count 
increases (decreases) by a 
constant  O(nk)
from the previous one -
where it changes by a factor 

O(log n) 


