A General Portable Performance Metric

e Informally, Time to solve a problem of size, n,
T(n) 1s O(logn)
€T(n) =clog,n
 Formally:
« O(g(n))isthe set of functions, f, such that
f(n) < cg(n)
for some constant, C>0, and N > N

e Alternatively,
we may write

le for sufficiently
large N

im ()
N—oo g(n)

<C

and say

[g IS an upper bound for f ]




A General Portable Performance Metric

O(g)

- the set of functions that grow no faster than g.

g(n) describes the worst case behaviour of an
algorithm that is O( Q)

Two additional notations

e (XQ)

f(n) > cg(n)

for some constant, C, and n > N

8(g) = O(g) N Q(Q)[Set of functions growingJ

- the set of functions, f, such that )
gis alower
[boundforf ]

at the same rate as @




Properties of the O notation

 Constant factors may be ignored
e V k>0, kf is O(f)
 Higher powers grow faster
e N’ is O(ns) iIf O<r<'s
€ Fastest growing term dominates a sum
« If T is O(g), then f+ gis O(Q)
eg an* + bnd is O(n*)

€Polynomial’s growth rate is determined by leading
term

 If f is apolynomial of degree d,
then f is O(nY)



Properties of the O notation

« fis O(g) Is transitive
- If f is O(g) and g is O(h) then f is O(h)

 Product of upper bounds is upper bound for the
product

« If f isO(g) and h is O(r) then fh is O(gr)
/¢ * Exponential functions grow faster than powers
: e nk is O( b") v b>1andk=>0
: egn?® is O( 1.05")
:  Logarithms grow more slowly than powers
| * log,n is O(nk) v b>landk>0
\ eglog,n is O(n%>)

Important!

/

/



Properties of the O notation

e All logarithms grow at the same rate
« log,n is O(loggn) v b,d>1

e Sum of first nrt" powers grows as the (r+1)" power

¢ 3K is @( ntl)
k=1

ey k%i = ”(2+1) is @( n?)




Polynomial and Intractable Algorithms

 Polynomial Time complexity
 An algorithm is said to be polynomial if it is
O( nd) for some integer d
 Polynomial algorithms are said to be efficient
 They solve problems in reasonable times!

e Intractable algorithms

e Algorithms for which there is no known
polynomial time algorithm

« We will come back to this important class later
In the course



Analysing an Algorithm

« Simple statement sequence
Si; S, .- Sy
e O(1) as long as kis constant
« Simple loops
for(1=0;i<n;i++) { s; }
where s is O(1)

e Time complexityis nO(1) or O(n)
 Nested loops |

for(i1=0;1<n;i++)
for(j=0;j<n;j++) { s; }
e Complexityis nO(n) or O(n?)

This part is
O(n)



Analysing an Algorithm

« Loop index doesn’t vary linearly

h = 1;
while ( h <= n) {
S,
h =2 * h;
}

 htakes values 1, 2,4, ... until it exceeds n
 There are 1+ log,n iterations
« Complexity O(log n)



Analysing an Algorithm

 Loop index depends on outer loop index
for()=0;]<n;]++)
for(k=0; k<] ; k++){

S,
}
* Inner loop executed
1,23, .....,ntimes Distinguish this case -
where the iteration count
% - n(n+1) increases (decreases) by a
i1 2 constant € O(nk)

from the previous one -
where it changes by a factor

.. Complexity O(n?
P y o) € O(log n)



