
A General Portable Performance Metric

• Informally, Time to solve a problem of size, n,
T(n) is O(logn)

T(n) = c log2n
• Formally:

• O(g(n)) is the set of functions, f, such that
 f(n) < c g(n)
 for some constant, c > 0, and n > N
• Alternatively,

we may write
 and say

lim f(n)

g(n)n→∞
≤ c

ie for sufficiently
large n

g is an upper bound for f

A General Portable Performance Metric

• O(g)
- the set of functions that grow no faster than g.

• g(n) describes the worst case behaviour of an
algorithm that is O(g)

• Two additional notations
• Ω(g)

- the set of functions, f, such that
 f(n) > c g(n)
 for some constant, c, and n > N

• Θ(g) = O(g) ∩ Ω(g)

g is a lower
bound for f

Set of functions growing
at the same rate as g

Properties of the O notation

• Constant factors may be ignored
• ∀ k > 0, kf is O(f)

• Higher powers grow faster
• nr is O(ns) if 0 ≤ r ≤ s

Fastest growing term dominates a sum
• If f is O(g), then f + g is O(g)
 eg an4 + bn3 is O(n4)

Polynomial’s growth rate is determined by leading
term

• If f is a polynomial of degree d,
then f is O(nd)

Properties of the O notation
• f is O(g) is transitive

• If f is O(g) and g is O(h) then f is O(h)
• Product of upper bounds is upper bound for the

product
• If f is O(g) and h is O(r) then fh is O(gr)

• Exponential functions grow faster than powers
• nk is O(bn) ∀ b > 1 and k ≥ 0

eg n20 is O(1.05n)
• Logarithms grow more slowly than powers

• logbn is O(nk) ∀ b > 1 and k > 0
eg log2n is O(n0.5) Important!

Properties of the O notation

• All logarithms grow at the same rate
• logbn is O(logdn) ∀ b, d > 1

• Sum of first n rth powers grows as the (r+1)th power
• Σ kr is Θ (nr+1)

eg Σ i = is Θ (n2)

k=1

n

k=1

n n(n+1)
2

Polynomial and Intractable Algorithms

• Polynomial Time complexity
• An algorithm is said to be polynomial if it is

O(nd) for some integer d
• Polynomial algorithms are said to be efficient

• They solve problems in reasonable times!

• Intractable algorithms
• Algorithms for which there is no known

polynomial time algorithm
• We will come back to this important class later

in the course

Analysing an Algorithm

• Simple statement sequence
 s1; s2; …. ; sk
• O(1) as long as k is constant

• Simple loops
 for(i=0;i<n;i++) { s; }
 where s is O(1)
• Time complexity is n O(1) or O(n)

• Nested loops
 for(i=0;i<n;i++)

for(j=0;j<n;j++) { s; }
• Complexity is n O(n) or O(n2)

This part is
O(n)

Analysing an Algorithm

• Loop index doesn’t vary linearly
 h = 1;
while (h <= n) {

s;
h = 2 * h;

 }
• h takes values 1, 2, 4, … until it exceeds n
• There are 1 + log2n iterations
• Complexity O(log n)

Analysing an Algorithm

• Loop index depends on outer loop index
 for(j=0;j<n;j++)
 for(k=0;k<j;k++){

s;
}

• Inner loop executed
• 1, 2, 3, …., n times

∴ Complexity O(n2)

n
Σ i =
i=1

n(n+1)
2

Distinguish this case -
where the iteration count
increases (decreases) by a
constant O(nk)
from the previous one -
where it changes by a factor

O(log n)

